Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a “phase transition” qualitatively distinguishes good and bad representations.

1.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
, “
Coarse-grained protein models and their applications
,”
Chem. Rev.
116
,
7898
7936
(
2016
).
2.
M.
Giulini
,
M.
Rigoli
,
G.
Mattiotti
,
R.
Menichetti
,
T.
Tarenzi
,
R.
Fiorentini
, and
R.
Potestio
, “
From system modeling to system analysis: The impact of resolution level and resolution distribution in the computer-aided investigation of biomolecules
,”
Front. Mol. Biosci.
8
,
676976
(
2021
).
3.
J.
Jin
,
A. J.
Pak
,
A. E. P.
Durumeric
,
T. D.
Loose
, and
G. A.
Voth
, “
Bottom-up coarse-graining: Principles and perspectives
,”
J. Chem. Theory Comput.
18
(
10
),
5759
5791
(
2022
).
4.
F.
Schmid
, “
Understanding and modeling polymers: The challenge of multiple scales
,”
ACS Polym. Au
3
(
1
),
28
58
(
2023
).
5.
W. G.
Noid
, “
Perspective: Advances, challenges, and insight for predictive coarse-grained models
,”
J. Phys. Chem. B
127
,
4174
4207
(
2023
).
6.
M. G.
Guenza
,
M.
Dinpajooh
,
J.
McCarty
, and
I. Y.
Lyubimov
, “
Accuracy, transferability, and efficiency of coarse-grained models of molecular liquids
,”
J. Phys. Chem. B
122
(
45
),
10257
10278
(
2018
).
7.
T. E.
Gartner
and
A.
Jayaraman
, “
Modeling and simulations of polymers: A roadmap
,”
Macromolecules
52
(
3
),
755
786
(
2019
).
8.
S.
Dhamankar
and
M. A.
Webb
, “
Chemically specific coarse-graining of polymers: Methods and prospects
,”
J. Polym. Sci.
59
(
22
),
2613
2643
(
2021
).
9.
W. G.
Noid
, “
Perspective: Coarse-grained models for biomolecular systems
,”
J. Chem. Phys.
139
(
9
),
090901
(
2013
).
10.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach
,”
Phys. Rev. E
52
,
3730
3737
(
1995
).
11.
F.
Müller-Plathe
, “
Coarse-graining in polymer simulation: From the atomistic to the mesoscopic scale and back
,”
ChemPhysChem
3
,
754
769
(
2002
).
12.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
,
2469
2473
(
2005
).
13.
S.
Izvekov
and
G. A.
Voth
, “
Multiscale coarse graining of liquid-state systems
,”
J. Chem. Phys.
123
,
134105
(
2005
).
14.
M. S.
Shell
, “
The relative entropy is fundamental to multiscale and inverse thermodynamic problems
,”
J. Chem. Phys.
129
,
144108
(
2008
).
15.
A.
Savelyev
and
G. A.
Papoian
, “
Molecular renormalization group coarse-graining of electrolyte solutions: Application to aqueous NaCl and KCl
,”
J. Phys. Chem. B
113
,
7785
7793
(
2009
).
16.
W. G.
Noid
, “
Systematic methods for structurally consistent coarse-grained models
,”
Methods Mol. Biol.
924
,
487
531
(
2013
).
17.
S.
Riniker
,
J. R.
Allison
, and
W. F.
van Gunsteren
, “
On developing coarse-grained models for biomolecular simulation: A review
,”
Phys. Chem. Chem. Phys.
14
(
36
),
12423
12430
(
2012
).
18.
V. A.
Harmandaris
,
D.
Reith
,
N. F. A.
van der Vegt
, and
K.
Kremer
, “
Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene
,”
Macromol. Chem. Phys.
208
,
2109
2120
(
2007
).
19.
T.
Ohkuma
and
K.
Kremer
, “
Comparison of two coarse-grained models of cis-polyisoprene with and without pressure correction
,”
Polymer
130
,
88
101
(
2017
).
20.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
, “
Versatile object-oriented toolkit for coarse-graining applications
,”
J. Chem. Theory Comput.
5
(
12
),
3211
3223
(
2009
).
21.
A.
Das
,
L.
Lu
,
H. C.
Andersen
, and
G. A.
Voth
, “
The multiscale coarse-graining method. X. Improved algorithms for constructing coarse-grained potentials for molecular systems
,”
J. Chem. Phys.
136
(
19
),
194115
(
2012
).
22.
J. F.
Rudzinski
and
W. G.
Noid
, “
Investigation of coarse-grained mappings via an iterative generalized Yvon-Born-Green method
,”
J. Phys. Chem. B
118
(
28
),
8295
8312
(
2014
).
23.
J. F.
Rudzinski
and
W. G.
Noid
, “
Bottom-up coarse-graining of peptide ensembles and helix-coil transitions
,”
J. Chem. Theory Comput.
11
(
3
),
1278
1291
(
2015
).
24.
J. W.
Mullinax
and
W. G.
Noid
, “
Extended ensemble approach for deriving transferable coarse-grained potentials
,”
J. Chem. Phys.
131
,
104110
(
2009
).
25.
M.
Dallavalle
and
N. F. A.
van der Vegt
, “
Evaluation of mapping schemes for systematic coarse graining of higher alkanes
,”
Phys. Chem. Chem. Phys.
19
(
34
),
23034
23042
(
2017
).
26.
J.
Jin
,
Y.
Han
, and
G. A.
Voth
, “
Ultra-coarse-grained liquid state models with implicit hydrogen bonding
,”
J. Chem. Theory Comput.
14
(
12
),
6159
6174
(
2018
).
27.
A.
Khot
,
S. B.
Shiring
, and
B. M.
Savoie
, “
Evidence of information limitations in coarse-grained models
,”
J. Chem. Phys.
151
(
24
),
244105
(
2019
).
28.
M.
Chakraborty
,
J.
Xu
, and
A. D.
White
, “
Is preservation of symmetry necessary for coarse-graining?
,”
Phys. Chem. Chem. Phys.
22
(
26
),
14998
15005
(
2020
).
29.
P.
Koehl
,
F.
Poitevin
,
R.
Navaza
, and
M.
Delarue
, “
The renormalization group and its applications to generating coarse-grained models of large biological molecular systems
,”
J. Chem. Theory Comput.
13
(
3
),
1424
1438
(
2017
).
30.
M.
Chakraborty
,
C.
Xu
, and
A. D.
White
, “
Encoding and selecting coarse-grain mapping operators with hierarchical graphs
,”
J. Chem. Phys.
149
(
13
),
134106
(
2018
).
31.
M. A.
Webb
,
J. Y.
Delannoy
, and
J. J.
de Pablo
, “
Graph-based approach to systematic molecular coarse-graining
,”
J. Chem. Theory Comput.
15
,
1199
(
2019
).
32.
P.
Diggins
,
C.
Liu
,
M.
Deserno
, and
R.
Potestio
, “
Optimal coarse-grained site selection in elastic network models of biomolecules
,”
J. Chem. Theory Comput.
15
(
1
),
648
664
(
2019
).
33.
X.
Fu
,
T.
Xie
,
N. J.
Rebello
,
B. D.
Olsen
, and
T.
Jaakkola
, “
Simulate time-integrated coarse-grained molecular dynamics with multi-scale graph networks
,” arXiv:2204.10348 [physics] (
2022
).
34.
A.
Arkhipov
,
P. L.
Freddolino
, and
K.
Schulten
, “
Stability and dynamics of virus capsids described by coarse-grained modeling
,”
Structure
14
,
1767
1777
(
2006
).
35.
W.
Wang
and
R.
Gómez-Bombarelli
, “
Coarse-graining auto-encoders for molecular dynamics
,”
npj Comput. Mater.
5
(
1
),
125
(
2019
).
36.
J.
Ruza
,
W.
Wang
,
D.
Schwalbe-Koda
,
S.
Axelrod
,
W. H.
Harris
, and
R.
Gómez-Bombarelli
, “
Temperature-transferable coarse-graining of ionic liquids with dual graph convolutional neural networks
,”
J. Chem. Phys.
153
(
16
),
164501
(
2020
).
37.
Z.
Li
,
G. P.
Wellawatte
,
M.
Chakraborty
,
H. A.
Gandhi
,
C.
Xu
, and
A. D.
White
, “
Graph neural network based coarse-grained mapping prediction
,”
Chem. Sci.
11
(
35
),
9524
9531
(
2020
).
38.
F.
Errica
,
M.
Giulini
,
D.
Bacciu
,
R.
Menichetti
,
A.
Micheli
, and
R.
Potestio
, “
A deep graph network–enhanced sampling approach to efficiently explore the space of reduced representations of proteins
,”
Front. Mol. Biosci.
8
,
637396
(
2021
).
39.
K. A.
Louison
,
I. L.
Dryden
, and
C. A.
Laughton
, “
GLIMPS: A machine learning approach to resolution transformation for multiscale modeling
,”
J. Chem. Theory Comput.
17
(
12
),
7930
7937
(
2021
).
40.
S.
Chennakesavalu
,
D. J.
Toomer
, and
G. M.
Rotskoff
, “
Ensuring thermodynamic consistency with invertible coarse-graining
,”
J. Chem. Phys.
158
(
12
),
124126
(
2023
).
41.
M.
Giulini
,
R.
Menichetti
,
M. S.
Shell
, and
R.
Potestio
, “
An information-theory-based approach for optimal model reduction of biomolecules
,”
J. Chem. Theory Comput.
16
(
11
),
6795
6813
(
2020
).
42.
R.
Menichetti
,
M.
Giulini
, and
R.
Potestio
, “
A journey through mapping space: Characterising the statistical and metric properties of reduced representations of macromolecules
,”
Eur. Phys. J. B
94
(
10
),
204
(
2021
).
43.
R.
Holtzman
,
M.
Giulini
, and
R.
Potestio
, “
Making sense of complex systems through resolution, relevance, and mapping entropy
,”
Phys. Rev. E
106
,
044101
(
2022
).
44.
M.
Mele
,
R.
Covino
, and
R.
Potestio
, “
Information-theoretical measures identify accurate low-resolution representations of protein configurational space
,”
Soft Matter
18
(
37
),
7064
7074
(
2022
).
45.
J. F.
Rudzinski
and
W. G.
Noid
, “
Coarse-graining entropy, forces, and structures
,”
J. Chem. Phys.
135
(
21
),
214101
(
2011
).
46.
H.
Gohlke
and
M. F.
Thorpe
, “
A natural coarse graining for simulating large biomolecular motion
,”
Biophys. J.
91
,
2115
2120
(
2006
).
47.
M.
Stepanova
, “
Dynamics of essential collective motions in proteins: Theory
,”
Phys. Rev. E
76
,
051918
(
2007
).
48.
M.
Li
,
J. Z. H.
Zhang
, and
F.
Xia
, “
A new algorithm for construction of coarse-grained sites of large biomolecules
,”
J. Comput. Chem.
37
(
9
),
795
804
(
2016
).
49.
M.
Li
,
J. Z.
Zhang
, and
F.
Xia
, “
Constructing optimal coarse-grained sites of huge biomolecules by fluctuation maximization
,”
J. Chem. Theory Comput.
12
(
4
),
2091
2100
(
2016
).
50.
Z.
Zhang
,
L.
Lu
,
W. G.
Noid
,
V.
Krishna
,
J.
Pfaendtner
, and
G. A.
Voth
, “
A systematic methodology for defining coarse-grained sites in large biomolecules
,”
Biophys. J.
95
(
11
),
5073
5083
(
2008
).
51.
Z.
Zhang
,
J.
Pfaendtner
,
A.
Grafmuller
, and
G. A.
Voth
, “
Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models
,”
Biophys. J.
97
(
8
),
2327
2337
(
2009
).
52.
Z.
Zhang
and
G. A.
Voth
, “
Coarse-grained representations of large biomolecular complexes from low-resolution structural data
,”
J. Chem. Theory Comput.
6
,
2990
3002
(
2010
).
53.
A. V.
Sinitskiy
,
M. G.
Saunders
, and
G. A.
Voth
, “
Optimal number of coarse-grained sites in different components of large biomolecular complexes
,”
J. Phys. Chem. B
116
(
29
),
8363
8374
(
2012
).
54.
J. J.
Madsen
,
A. V.
Sinitskiy
,
J.
Li
, and
G. A.
Voth
, “
Highly coarse-grained representations of transmembrane proteins
,”
J. Chem. Theory Comput.
13
(
2
),
935
944
(
2017
).
55.
A.
Amadei
,
A. B. M.
Linssen
, and
H. J. C.
Berendsen
, “
Essential dynamics of proteins
,”
Proteins: Struct., Funct., Bioinf.
17
,
412
425
(
1993
).
56.
L.
Boninsegna
,
R.
Banisch
, and
C.
Clementi
, “
A data-driven perspective on the hierarchical assembly of molecular structures
,”
J. Chem. Theory Comput.
14
(
1
),
453
460
(
2018
).
57.
W.
Yang
,
C.
Templeton
,
D.
Rosenberger
,
A.
Bittracher
,
F.
Nüske
,
F.
Nóe
, and
C.
Clementi
, “
Slicing and dicing: Optimal coarse-grained representation to preserve molecular kinetics
,”
ACS Cent. Sci.
9
,
186
(
2023
).
58.
T. T.
Foley
,
M. S.
Shell
, and
W. G.
Noid
, “
The impact of resolution upon entropy and information in coarse-grained models
,”
J. Chem. Phys.
143
,
243104
(
2015
).
59.
T. T.
Foley
,
K. M.
Kidder
,
M. S.
Shell
, and
W. G.
Noid
, “
Exploring the landscape of model representations
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
39
),
24061
24068
(
2020
).
60.
K. M.
Kidder
,
R. J.
Szukalo
, and
W. G.
Noid
, “
Energetic and entropic considerations for coarse-graining
,”
Eur. Phys. J. B
94
,
153
(
2021
).
61.
P. J.
Flory
,
M.
Gordon
, and
N. G.
McCrum
, “
Statistical thermodynamics of random networks [and discussion]
,”
Proc. R. Soc. London, Ser. A
351
(
1666
),
351
380
(
1976
).
62.
T.
Haliloglu
,
I.
Bahar
, and
B.
Erman
, “
Gaussian dynamics of folded proteins
,”
Phys. Rev. Lett.
79
,
3090
3093
(
1997
).
63.
I.
Bahar
,
T. R.
Lezon
,
A.
Bakan
, and
I. H.
Shrivastava
, “
Normal mode analysis of biomolecular structures: Functional mechanisms of membrane proteins
,”
Chem. Rev.
110
(
3
),
1463
1497
(
2010
).
64.
I.
Bahar
and
A. J.
Rader
, “
Coarse-grained normal mode analysis in structural biology
,”
Curr. Opin. Struct. Biol.
15
(
5
),
586
592
(
2005
).
65.
B.
Brooks
and
M.
Karplus
, “
Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme
,”
Proc. Natl. Acad. Sci. U. S. A.
82
(
15
),
4995
4999
(
1985
).
66.
J.-F.
Gibrat
and
N.
, “
Normal mode analysis of human lysozyme: Study of the relative motion of the two domains and characterization of the harmonic motion
,”
Proteins: Struct., Funct., Bioinf.
8
(
3
),
258
279
(
1990
).
67.
Y.
Seno
and
N.
, “
Deoxymyoglobin studied by the conformational normal mode analysis. I. Dynamics of globin and the heme-globin interaction
,”
J. Mol. Biol.
216
(
1
),
95
109
(
1990
).
68.
L.
Mouawad
and
D.
Perahia
, “
Motions in hemoglobin studied by normal mode analysis and energy minimization: Evidence for the existence of tertiary T-like, quaternary R-like intermediate structures
,”
J. Mol. Biol.
258
(
2
),
393
410
(
1996
).
69.
F.
Tama
and
Y.-H.
Sanejouand
, “
Conformational change of proteins arising from normal mode calculations
,”
Protein Eng., Des. Sel.
14
(
1
),
1
6
(
2001
).
70.
M.
Delarue
and
Y.-H.
Sanejouand
, “
Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: The elastic network model
,”
J. Mol. Biol.
320
(
5
),
1011
1024
(
2002
).
71.
C.
Micheletti
,
G.
Lattanzi
, and
A.
Maritan
, “
Elastic properties of proteins: Insight on the folding process and evolutionary selection of native structures
,”
J. Mol. Biol.
321
(
5
),
909
921
(
2002
).
72.
A. J.
Rader
and
I.
Bahar
, “
Folding core predictions from network models of proteins
,”
Polymer
45
(
2
),
659
668
(
2004
).
73.
A. J.
Rader
,
G.
Anderson
,
B.
Isin
,
H. G.
Khorana
,
I.
Bahar
, and
J.
Klein-Seetharaman
, “
Identification of core amino acids stabilizing rhodopsin
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
19
),
7246
7251
(
2004
).
74.
W.
Zheng
and
B. R.
Brooks
, “
Normal-modes-based prediction of protein conformational changes guided by distance constraints
,”
Biophys. J.
88
(
5
),
3109
3117
(
2005
).
75.
W.
Zheng
,
B. R.
Brooks
, and
D.
Thirumalai
, “
Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
20
),
7664
7669
(
2006
).
76.
F.
Tama
,
O.
Miyashita
, and
C. L.
Brooks
, “
Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis
,”
J. Mol. Biol.
337
(
4
),
985
999
(
2004
).
77.
M.
Delarue
and
P.
Dumas
, “
On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
18
),
6957
6962
(
2004
).
78.
C.
Gorba
,
O.
Miyashita
, and
F.
Tama
, “
Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data
,”
Biophys. J.
94
(
5
),
1589
1599
(
2008
).
79.
J.
Ma
, “
Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes
,”
Structure
13
(
3
),
373
380
(
2005
).
80.
P.
Durand
,
G.
Trinquier
, and
Y.-H.
Sanejouand
, “
A new approach for determining low-frequency normal modes in macromolecules
,”
Biopolymers
34
(
6
),
759
771
(
1994
).
81.
F.
Tama
,
F. X.
Gadea
,
O.
Marques
, and
Y.-H.
Sanejouand
, “
Building-block approach for determining low-frequency normal modes of macromolecules
,”
Proteins: Struct., Funct., Bioinf.
41
(
1
),
1
7
(
2000
).
82.
M. M.
Tirion
, “
Large amplitude elastic motions in proteins from a single-parameter, atomic analysis
,”
Phys. Rev. Lett.
77
,
1905
1908
(
1996
).
83.
K.
Hinsen
, “
Analysis of domain motions by approximate normal mode calculations
,”
Proteins: Struct., Funct., Bioinf.
33
(
3
),
417
429
(
1998
).
84.
K.
Hinsen
,
A.
Thomas
, and
M. J.
Field
, “
Analysis of domain motions in large proteins
,”
Proteins: Struct., Funct., Bioinf.
34
(
3
),
369
382
(
1999
).
85.
S.
Kundu
,
D. C.
Sorensen
, and
G. N.
Phillips
, “
Automatic domain decomposition of proteins by a Gaussian network model
,”
Proteins: Struct., Funct., Bioinf.
57
(
4
),
725
733
(
2004
).
86.
P.
Doruker
,
R. L.
Jernigan
, and
I.
Bahar
, “
Dynamics of large proteins through hierarchical levels of coarse-grained structures
,”
J. Comput. Chem.
23
(
1
),
119
127
(
2002
).
87.
C.
Chennubhotla
,
A. J.
Rader
,
L.-W.
Yang
, and
I.
Bahar
, “
Elastic network models for understanding biomolecular machinery: From enzymes to supramolecular assemblies
,”
Phys. Biol.
2
(
4
),
S173
S180
(
2005
).
88.
C.
Chennubhotla
and
I.
Bahar
, “
Markov propagation of allosteric effects in biomolecular systems: Application to GroEL–GroES
,”
Mol. Syst. Biol.
2
(
1
),
36
(
2006
).
89.
K.
Xia
,
K.
Opron
, and
G.-W.
Wei
, “
Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM)
,”
J. Chem. Phys.
143
(
20
),
204106
(
2015
).
90.
S.
Nicolay
and
Y.-H.
Sanejouand
, “
Functional modes of proteins are among the most robust
,”
Phys. Rev. Lett.
96
(
7
),
078104
(
2006
).
91.
W. G.
Krebs
,
V.
Alexandrov
,
C. A.
Wilson
,
N.
Echols
,
H.
Yu
, and
M.
Gerstein
, “
Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic
,”
Proteins: Struct., Funct., Bioinf.
48
(
4
),
682
695
(
2002
).
92.
H. T.
Davis
and
K. T.
Thomson
,
Linear Algebra and Linear Operators in Engineering
(
Academic Press
,
2000
).
93.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
(
1
),
79
86
(
1951
).
94.
J. A.
Thomas
and
T. M.
Cover
,
Elements of Information Theory
, 2nd ed. (
Wiley Interscience
,
2006
).
95.
B. R.
Brooks
,
D.
Janezic
, and
M.
Karplus
, “
Harmonic analysis of large systems. I. Methodology
,”
J. Comput. Chem.
16
(
12
),
1522
1542
(
1995
).
96.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Adison Wesley
,
2002
).
97.
R.
Potestio
,
F.
Pontiggia
, and
C.
Micheletti
, “
Coarse-grained description of protein internal dynamics: An optimal strategy for decomposing proteins in rigid subunits
,”
Biophys. J.
96
(
12
),
4993
5002
(
2009
).
98.
L.
Ponzoni
,
G.
Polles
,
V.
Carnevale
, and
C.
Micheletti
, “
SPECTRUS: A dimensionality reduction approach for identifying dynamical domains in protein complexes from limited structural datasets
,”
Structure
23
(
8
),
1516
1525
(
2015
).
99.
P.
Calligari
,
M.
Gerolin
,
D.
Abergel
, and
A.
Polimeno
, “
Decomposition of proteins into dynamic units from atomic cross-correlation functions
,”
J. Chem. Theory Comput.
13
(
1
),
309
319
(
2017
).
100.
C.
Brown
,
A.
Agarwal
, and
A.
Luque
, “
pyCapsid: Identifying dominant dynamics and quasi-rigid mechanical units in protein shells
,”
Bioinformatics
40
,
btad761
(
2024
).
101.
S.
Vijay-Kumar
,
C. E.
Bugg
, and
W. J.
Cook
, “
Structure of ubiquitin refined at 1.8 Å resolution
,”
J. Mol. Biol.
194
(
3
),
531
544
(
1987
).
102.
A.
Bakan
,
L. M.
Meireles
, and
I.
Bahar
, “
ProDy: Protein dynamics inferred from theory and experiments
,”
Bioinformatics
27
(
11
),
1575
1577
(
2011
).
103.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
(
12
),
124105
(
2008
).
104.
M.
Meilă
, “
Comparing clusterings—An information based distance
,”
J. Multivar. Anal.
98
(
5
),
873
895
(
2007
).
105.
F. H.
Stillinger
and
T. A.
Weber
, “
Hidden structure in liquids
,”
Phys. Rev. A
25
,
978
989
(
1982
).
106.
D. H. E.
Gross
,
Microcanonical Thermodynamics
(
World Scientific
,
2001
).
107.
D. J. C.
MacKay
,
Information Theory, Inference and Learning Algorithms
(
Cambridge University Press
,
2003
).
108.
N.
Goldenfeld
,
Lectures on Phase Transitions and the Renormalization Group
(
Westview Press
,
1992
).
109.
S.
Izvekov
and
B. M.
Rice
, “
Hierarchical machine learning of low-resolution coarse-grained free energy potentials
,”
J. Chem. Theory Comput.
19
(
14
),
4436
4450
(
2023
).
110.
J. F.
Rudzinski
, “
Recent progress towards chemically-specific coarse-grained simulation models with consistent dynamical properties
,”
Computation
7
(
3
),
42
(
2019
).
111.
V.
Klippenstein
,
M.
Tripathy
,
G.
Jung
,
F.
Schmid
, and
N. F. A.
van der Vegt
, “
Introducing memory in coarse-grained molecular simulations
,”
J. Phys. Chem. B
125
(
19
),
4931
4954
(
2021
).
112.
T.
Schilling
, “
Coarse-grained modelling out of equilibrium
,”
Phys. Rep.
972
,
1
45
(
2022
).
113.
G.
Lamm
and
A.
Szabo
, “
Langevin modes of macromolecules
,”
J. Chem. Phys.
85
(
12
),
7334
7348
(
1986
).
114.
C.
Hijon
,
P.
Espanol
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
, “
Mori-Zwanzig formalism as a practical computational tool
,”
Faraday Discuss.
144
,
301
322
(
2010
).
115.
N.
Di Pasquale
,
T.
Hudson
, and
M.
Icardi
, “
Systematic derivation of hybrid coarse-grained models
,”
Phys. Rev. E
99
(
1
),
013303
(
2019
).
116.
S.
Izvekov
, “
Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium
,”
Phys. Rev. E
104
(
2
),
024121
(
2021
).
117.
J.
Jin
,
E. K.
Lee
, and
G. A.
Voth
, “
Understanding dynamics in coarse-grained models. III. Roles of rotational motion and translation-rotation coupling in coarse-grained dynamics
,”
J. Chem. Phys.
159
(
16
),
164102
(
2023
).
118.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
(
5
),
62
74
(
2014
).
119.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
120.
J. L.
Gross
and
J.
Yellen
,
Graph Theory and Its Applications
(
CRC Press
,
2005
).

Supplementary Material

You do not currently have access to this content.