The operations of current quantum computers are still significantly affected by decoherence caused by interaction with the environment. In this work, we employ the non-perturbative hierarchical equations of motion (HEOM) method to simulate the operation of model quantum computers and reveal the effects of dissipation on the entangled quantum states and on the performance of well-known quantum algorithms. Multi-qubit entangled states in Shor’s factorizing algorithm are first generated and propagated using the HEOM. It is found that the failure of factorization is accompanied by a loss of fidelity and mutual information. An important challenge in using the HEOM to simulate quantum computers in a dissipative environment is how to efficiently treat systems with many qubits. We propose a two-dimensional tensor network scheme for this problem and demonstrate its capability by simulating a one-dimensional random circuit model with 21 qubits.

1.
P. W.
Shor
, “
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
,”
SIAM J. Sci. Comput.
26
,
1484
1509
(
1997
).
2.
A.
Montanaro
, “
Quantum algorithms: An overview
,”
npj Quantum Inf.
2
,
15023
(
2016
).
3.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
4.
L.
Franken
,
B.
Georgiev
,
S.
Mucke
,
M.
Wolter
,
R.
Heese
,
C.
Bauckhage
, and
N.
Piatkowski
, “
Quantum circuit evolution on NISQ devices
,” in
2022 IEEE Congress on Evolutionary Computation (CEC)
(
IEEE
,
2022
).
5.
K.
Bharti
,
A.
Cervera-Lierta
,
T. H.
Kyaw
,
T.
Haug
,
S.
Alperin-Lea
,
A.
Anand
,
M.
Degroote
,
H.
Heimonen
,
J. S.
Kottmann
,
T.
Menke
,
W.-K.
Mok
,
S.
Sim
,
L.-C.
Kwek
, and
A.
Aspuru-Guzik
, “
Noisy intermediate-scale quantum algorithms
,”
Rev. Mod. Phys.
94
,
015004
(
2022
).
6.
S.
Bravyi
,
D.
Gosset
, and
R.
König
, “
Quantum advantage with shallow circuits
,”
Science
362
,
308
311
(
2018
).
7.
F.
Leymann
and
J.
Barzen
, “
The bitter truth about gate-based quantum algorithms in the NISQ era
,”
Quantum Sci. Technol.
5
,
044007
(
2020
).
8.
M.
Tokman
,
A.
Behne
,
B.
Torres
,
M.
Erukhimova
,
Y.
Wang
, and
A.
Belyanin
, “
Dissipation-driven formation of entangled dark states in strongly coupled inhomogeneous many-qubit systems in solid-state nanocavities
,”
Phys. Rev. A
107
,
013721
(
2023
).
9.
M.
Amico
,
Z. H.
Saleem
, and
M.
Kumph
, “
Experimental study of Shor’s factoring algorithm using the IBM Q experience
,”
Phys. Rev. A
100
,
012305
(
2019
).
10.
M.
Cattaneo
,
M. A.
Rossi
,
G.
García-Pérez
,
R.
Zambrini
, and
S.
Maniscalco
, “
Quantum simulation of dissipative collective effects on noisy quantum computers
,”
PRX Quantum
4
,
010324
(
2023
).
11.
Y. I.
Bogdanov
,
A. Y.
Chernyavskiy
,
A.
Holevo
,
V.
Lukichev
, and
A.
Orlikovsky
, “
Modeling of quantum noise and the quality of hardware components of quantum computers
,”
Proc. SPIE
8700
,
404
415
(
2012
).
12.
C.
Miquel
,
J. P.
Paz
, and
R.
Perazzo
, “
Factoring in a dissipative quantum computer
,”
Phys. Rev. A
54
,
2605
(
1996
).
13.
O. V.
Zhirov
and
D. L.
Shepelyansky
, “
Dissipative decoherence in the Grover algorithm
,”
Eur. Phys. J. D
38
,
405
408
(
2006
).
14.
P. J.
Salas
, “
Noise effect on Grover algorithm
,”
Eur. Phys. J. D
46
,
365
373
(
2008
).
15.
L. K.
Grover
, “
Quantum mechanics helps in searching for a needle in a haystack
,”
Phys. Rev. Lett.
79
,
325
328
(
1997
).
16.
M. A.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2010
).
17.
K.
Head-Marsden
,
S.
Krastanov
,
D. A.
Mazziotti
, and
P.
Narang
, “
Capturing non-Markovian dynamics on near-term quantum computers
,”
Phys. Rev. Res.
3
,
013182
(
2021
).
18.
G.
White
,
F.
Pollock
,
L.
Hollenberg
,
K.
Modi
, and
C.
Hill
, “
Non-Markovian quantum process tomography
,”
PRX Quantum
3
,
020344
(
2022
).
19.
B. M.
Terhal
and
G.
Burkard
, “
Fault-tolerant quantum computation for local non-Markovian noise
,”
Phys. Rev. A
71
,
012336
(
2005
).
20.
A.
Spörl
,
T.
Schulte-Herbrüggen
,
S. J.
Glaser
,
V.
Bergholm
,
M. J.
Storcz
,
J.
Ferber
, and
F. K.
Wilhelm
, “
Optimal control of coupled Josephson qubits
,”
Phys. Rev. A
75
,
012302
(
2007
).
21.
M.
Abdelhafez
,
B.
Baker
,
A.
Gyenis
,
P.
Mundada
,
A. A.
Houck
,
D.
Schuster
, and
J.
Koch
, “
Universal gates for protected superconducting qubits using optimal control
,”
Phys. Rev. A
101
,
022321
(
2020
).
22.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
23.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and Master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
24.
Y.
Yan
,
J.
Jin
,
R.-X.
Xu
, and
X.
Zheng
, “
Dissipation equation of motion approach to open quantum systems
,”
Front. Phys.
11
,
110306
(
2016
).
25.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
26.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
, “
Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes using the nonperturbative reduced dynamics method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1498
(
2021
).
27.
A. G.
Dijkstra
and
Y.
Tanimura
, “
Non-Markovian entanglement dynamics in the presence of system-bath coherence
,”
Phys. Rev. Lett.
104
,
250401
(
2010
).
28.
J.
Ma
,
Z.
Sun
,
X.
Wang
, and
F.
Nori
, “
Entanglement dynamics of two qubits in a common bath
,”
Phys. Rev. A
85
,
062323
(
2012
).
29.
M.
Tsuchimoto
and
Y.
Tanimura
, “
Spins dynamics in a dissipative environment: Hierarchal equations of motion approach using a graphics processing unit (GPU)
,”
J. Chem. Theory Comput.
11
,
3859
3865
(
2015
).
30.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G.
Brandao
,
D. A.
Buell
et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
31.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
32.
Y.
Yan
,
M.
Xu
,
T.
Li
, and
Q.
Shi
, “
Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors
,”
J. Chem. Phys.
154
,
194104
(
2021
).
33.
S.
Boixo
,
S. V.
Isakov
,
V. N.
Smelyanskiy
,
R.
Babbush
,
N.
Ding
,
Z.
Jiang
,
M. J.
Bremner
,
J. M.
Martinis
, and
H.
Neven
, “
Characterizing quantum supremacy in near-term devices
,”
Nat. Phys.
14
,
595
600
(
2018
).
34.
Y.
Zhou
,
E. M.
Stoudenmire
, and
X.
Waintal
, “
What limits the simulation of quantum computers?
,”
Phys. Rev. X
10
,
041038
(
2020
).
35.
K.
Song
and
Q.
Shi
, “
Theoretical study of photoinduced proton coupled electron transfer reaction using the non-perturbative hierarchical equations of motion method
,”
J. Chem. Phys.
146
,
184108
(
2017
).
36.
H.
Takahashi
and
Y.
Tanimura
, “
Open quantum dynamics theory of spin relaxation: Application to μSR and low-field NMR spectroscopies
,”
J. Phys. Soc. Jpn.
89
,
064710
(
2020
).
37.
D.
Willsch
,
M.
Nocon
,
F.
Jin
,
H.
De Raedt
, and
K.
Michielsen
, “
Gate-error analysis in simulations of quantum computers with transmon qubits
,”
Phys. Rev. A
96
,
062302
(
2017
).
38.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
NJ
,
2012
).
39.
H.
Liu
,
L.
Zhu
,
S.
Bai
, and
Q.
Shi
, “
Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes
,”
J. Chem. Phys.
140
,
134106
(
2014
).
40.
U.
Skosana
and
M.
Tame
, “
Demonstration of Shor’s factoring algorithm for N = 21 on IBM quantum processors
,”
Sci. Rep.
11
,
16599
(
2021
).
41.
M. P.
Fisher
,
V.
Khemani
,
A.
Nahum
, and
S.
Vijay
, “
Random quantum circuits
,”
Annu. Rev. Condens. Matter Phys.
14
,
335
379
(
2023
).
42.
A.
Bouland
,
B.
Fefferman
,
C.
Nirkhe
, and
U.
Vazirani
, “
On the complexity and verification of quantum random circuit sampling
,”
Nat. Phys.
15
,
159
163
(
2019
).
43.
A. W.
Harrow
and
A.
Montanaro
, “
Quantum computational supremacy
,”
Nature
549
,
203
209
(
2017
).
44.
F.
Barratt
,
J.
Dborin
,
M.
Bal
,
V.
Stojevic
,
F.
Pollmann
, and
A. G.
Green
, “
Parallel quantum simulation of large systems on small NISQ computers
,”
npj Quantum Inf.
7
,
79
(
2021
).
45.
Y.
Pang
,
T.
Hao
,
A.
Dugad
,
Y.
Zhou
, and
E.
Solomonik
, “
Efficient 2D tensor network simulation of quantum systems
,” in
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2020
), pp.
1
14
.
46.
Y.
Liu
,
X.
Liu
et al, “
Closing the ‘quantum supremacy’ gap
,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
ACM
,
2021
).
47.
Z.-Y.
Chen
,
Q.
Zhou
,
C.
Xue
,
X.
Yang
,
G.-C.
Guo
, and
G.-P.
Guo
, “
64-qubit quantum circuit simulation
,”
Sci. Bull.
63
,
964
971
(
2018
).
48.
A.
Barenco
,
C. H.
Bennett
,
R.
Cleve
,
D. P.
DiVincenzo
,
N.
Margolus
,
P.
Shor
,
T.
Sleator
,
J. A.
Smolin
, and
H.
Weinfurter
, “
Elementary gates for quantum computation
,”
Phys. Rev. A
52
,
3457
3467
(
1995
).
49.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer’s guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
50.
I.
Bengtsson
and
K.
Zyczkowski
,
Geometry of Quantum States: An Introduction to Quantum Entanglement
(
Cambridge University Press
,
2006
).
51.
C. K.
Zachos
, “
A classical bound on quantum entropy
,”
J. Phys. A: Math. Theor.
40
,
F407
F412
(
2007
).
52.
S.
Bose
,
L.
Rallan
, and
V.
Vedral
, “
Communication capacity of quantum computation
,”
Phys. Rev. Lett.
85
,
5448
5451
(
2000
).
53.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
,
Wiley Series in Telecommunications and Signal Processing
(
Wiley-Interscience
,
2006
).
54.
Q.
Shi
,
L.-P.
Chen
,
G.-J.
Nan
,
R.-X.
Xu
, and
Y.-J.
Yan
, “
Electron transfer dynamics: Zusman equation versus exact theory
,”
J. Chem. Phys.
130
,
164518
(
2009
).
55.
M.
Zhang
,
C.
Wang
,
S.
Dong
,
H.
Zhang
,
Y.
Han
, and
L.
He
, “
Entanglement entropy scaling of noisy random quantum circuits in two dimensions
,”
Phys. Rev. A
106
,
052430
(
2022
).
56.
R.
Borrelli
and
S.
Dolgov
, “
Expanding the range of hierarchical equations of motion by tensor-train implementation
,”
J. Phys. Chem. B
125
,
5397
5407
(
2021
).
57.
M. S.
Sarandy
and
D. A.
Lidar
, “
Adiabatic quantum computation in open systems
,”
Phys. Rev. Lett.
95
,
250503
(
2005
).
58.
T.
Albash
and
D. A.
Lidar
, “
Adiabatic quantum computation
,”
Rev. Mod. Phys.
90
,
015002
(
2018
).
59.
A.
Das
and
B. K.
Chakrabarti
, “
Colloquium: Quantum annealing and analog quantum computation
,”
Rev. Mod. Phys.
80
,
1061
(
2008
).
60.
K.
Nakamura
and
Y.
Tanimura
, “
Hierarchical Schrödinger equations of motion for open quantum dynamics
,”
Phys. Rev. A
98
,
012109
(
2018
).
61.
W.
Pouse
,
L.
Peeters
,
C. L.
Hsueh
,
U.
Gennser
,
A.
Cavanna
,
M. A.
Kastner
,
A. K.
Mitchell
, and
D.
Goldhaber-Gordon
, “
Quantum simulation of an exotic quantum critical point in a two-site charge Kondo circuit
,”
Nat. Phys.
19
,
492
499
(
2023
).
62.
E.
Knill
and
R.
Laflamme
, “
Theory of quantum error-correcting codes
,”
Phys. Rev. A
55
,
900
911
(
1997
).
63.
E.
Knill
,
R.
Laflamme
, and
L.
Viola
, “
Theory of quantum error correction for general noise
,”
Phys. Rev. Lett.
84
,
2525
2528
(
2000
).
64.
A. A.
Moueddene
,
N.
Khammassi
,
K.
Bertels
, and
C. G.
Almudever
, “
Realistic simulation of quantum computation using unitary and measurement channels
,”
Phys. Rev. A
102
,
052608
(
2020
).
65.
K.
Marshall
,
D. F. V.
James
,
A.
Paler
, and
H.-K.
Lau
, “
Universal quantum computing with thermal state bosonic systems
,”
Phys. Rev. A
99
,
032345
(
2019
).
You do not currently have access to this content.