Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna–Matthews–Olson (FMO) complex and the vacuum state of an optical cavity. Specifically, based on a full-quantum analytical model to describe the strong coupling effect between the optical cavity and molecular vibration, we realize efficient manipulation of energy transfer efficiency (from 58% to 92%) and energy transfer time (from 20 to 500 ps) in one branch of FMO complex by actively controlling the coupling strength and the quality factor of the optical cavity under both near-resonant and off-resonant conditions, respectively. Our work provides a practical scenario to manipulate photosynthetic energy transfer by externally interfering molecular vibrations via an optical cavity and a comprehensible conceptual framework for researching other similar systems.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley
,
2021
).
2.
R. E.
Fenna
and
B. W.
Matthews
,
Nature
258
(
5536
),
573
577
(
1975
).
3.
Y. F.
Li
,
W.
Zhou
,
R. E.
Blankenship
, and
J. P.
Allen
,
J. Mol. Biol.
271
(
3
),
456
471
(
1997
).
4.
T.
Forster
,
Naturwissenschaften
33
(
6
),
166
175
(
1946
).
5.
D. L.
Andrews
,
S.
Li
et al,
J. Chem. Phys.
127
(
13
),
134902
(
2007
).
6.
G. D.
Scholes
,
X. J.
Jordanides
, and
G. R.
Fleming
,
J. Phys. Chem. B
105
(
8
),
1640
1651
(
2001
).
7.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
2008
).
8.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
(
21
),
218301
(
2004
).
9.
M. B.
Plenio
and
S. F.
Huelga
,
New J. Phys.
10
(
11
),
113019
(
2008
).
10.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
(
3
),
033003
(
2009
).
11.
A. W.
Chin
,
A.
Datta
,
F.
Caruso
,
S. F.
Huelga
, and
M. B.
Plenio
,
New J. Phys.
12
(
6
),
065002
(
2010
).
12.
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Philos. Trans. R. Soc. London, Ser. A
370
,
3638
3657
(
2012
).
13.
E. K.
Irish
,
R.
Gómez-Bombarelli
, and
B. W.
Lovett
,
Phys. Rev. A
90
(
1
),
012510
(
2014
).
14.
M.
Wendling
,
T.
Pullerits
,
M. A.
Przyjalgowski
,
S. I. E.
Vulto
,
T. J.
Aartsma
,
R.
van Grondelle
, and
H.
van Amerongen
,
J. Phys. Chem. B
104
(
24
),
5825
5831
(
2000
).
15.
A. B.
Doust
,
C. N. J.
Marai
,
S. J.
Harrop
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
,
J. Mol. Biol.
344
(
1
),
135
153
(
2004
).
16.
M.
Rätsep
and
A.
Freiberg
,
J. Lumin.
127
(
1
),
251
259
(
2007
).
17.
V. I.
Novoderezhkin
,
A. B.
Doust
,
C.
Curutchet
,
G. D.
Scholes
, and
R.
van Grondelle
,
Biophys. J.
99
(
2
),
344
352
(
2010
).
18.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
New J. Phys.
13
(
11
),
113034
(
2011
).
19.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
,
Nat. Phys.
9
(
2
),
113
118
(
2013
).
20.
E. J.
O’Reilly
and
A.
Olaya-Castro
,
Nat. Commun.
5
,
3012
(
2014
).
21.
Y. K.
Kosenkov
and
D.
Kosenkov
,
J. Chem. Phys.
151
(
14
),
144101
(
2019
).
22.
P.
Torma
and
W. L.
Barnes
,
Rep. Prog. Phys.
78
(
1
),
013901
(
2015
).
23.
F. J.
Garcia-Vidal
,
C.
Ciuti
, and
T. W.
Ebbesen
,
Science
373
(
6551
),
eabd0336
(
2021
).
24.
D. M.
Coles
,
Y.
Yang
,
Y.
Wang
,
R. T.
Grant
,
R. A.
Taylor
,
S. K.
Saikin
,
A.
Aspuru-Guzik
,
D. G.
Lidzey
,
J. K.-H.
Tang
, and
J. M.
Smith
,
Nat. Commun.
5
(
1
),
5561
(
2014
).
25.
D.
Coles
,
L. C.
Flatten
,
T.
Sydney
,
E.
Hounslow
,
S. K.
Saikin
,
A.
Aspuru-Guzik
,
V.
Vedral
,
J. K.-H.
Tang
,
R. A.
Taylor
,
J. M.
Smith
, and
D. G.
Lidzey
,
Small
13
(
38
),
1701777
(
2017
).
26.
F.
Wu
,
D.
Finkelstein-Shapiro
,
M.
Wang
,
I.
Rosenkampff
,
A.
Yartsev
,
T.
Pascher
,
T. C.
Nguyen- Phan
,
R.
Cogdell
,
K.
Börjesson
, and
T.
Pullerits
,
Nat. Commun.
13
(
1
),
6864
(
2022
).
27.
J.
Cao
,
J. Phys. Chem. Lett.
13
(
47
),
10943
10951
(
2022
).
28.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
(
3
),
137
254
(
2001
).
29.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge University Press
,
Cambridge
,
1997
).
30.
Y.
Wang
and
J. Y.
Haw
,
Phys. Lett. A
379
(
8
),
779
786
(
2015
).
31.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press on Demand
,
2002
).
32.
D. E.
Tronrud
,
J.
Wen
,
L.
Gay
, and
R. E.
Blankenship
,
Photosynth. Res.
100
(
2
),
79
87
(
2009
).
33.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
(
7033
),
625
628
(
2005
).
34.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
41
),
17255
17260
(
2009
).
35.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
(
18
),
184108
(
2010
).
36.
J.
Wu
,
F.
Liu
,
J.
Ma
,
R. J.
Silbey
, and
J.
Cao
,
J. Chem. Phys.
137
(
17
),
174111
(
2012
).
37.
J.
Schulze
and
O.
Kühn
,
J. Phys. Chem. B
119
(
20
),
6211
6216
(
2015
).
38.
A.
Sindhu
and
A.
Jain
,
ChemPhysChem
23
(
24
),
e202200392
(
2022
).
39.
A. G.
Dijkstra
,
C.
Wang
,
J.
Cao
, and
G. R.
Fleming
,
J. Phys. Chem. Lett.
6
(
4
),
627
632
(
2015
).
40.
H.
Chen
,
X.
Wang
,
A.-P.
Fang
, and
H.-R.
Li
,
Chin. Phys. B
25
(
9
),
098201
(
2016
).
41.
V. I.
Novoderezhkin
,
Photosyn. Res.
158
(
1
),
13
21
(
2023
).
42.
L. G.
Mourokh
and
F.
Nori
,
Phys. Rev. E
92
(
5
),
052720
(
2015
).
43.
Z.-Z.
Li
,
L.
Ko
,
Z.
Yang
,
M.
Sarovar
, and
K. B.
Whaley
,
New J. Phys.
24
(
3
),
033032
(
2022
).
44.
J.
Bittebierre
and
B.
Lazaridès
,
Appl. Opt.
40
(
1
),
11
19
(
2001
).
45.
K.
Ahmed
,
A. N.
Khan
,
A.
Rauf
, and
A.
Gul
,
IOP Conf. Ser.: Mater. Sci. Eng.
60
(
1
),
012016
(
2014
).
46.
F.
Wang
,
Y. Z.
Cheng
,
X.
Wang
,
Y. N.
Zhang
,
Y.
Nie
, and
R. Z.
Gong
,
Materials
11
(
7
),
1099
(
2018
).
47.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
(
8
),
2778
2797
(
2006
).

Supplementary Material

You do not currently have access to this content.