The knowledge of exact analytical functional forms for the pair correlation function g2(r) and its corresponding structure factor S(k) of disordered many-particle systems is limited. For fundamental and practical reasons, it is highly desirable to add to the existing database of analytical functional forms for such pair statistics. Here, we design a plethora of such pair functions in direct and Fourier spaces across the first three Euclidean space dimensions that are realizable by diverse many-particle systems with varying degrees of correlated disorder across length scales, spanning a wide spectrum of hyperuniform, typical nonhyperuniform, and antihyperuniform ones. This is accomplished by utilizing an efficient inverse algorithm that determines equilibrium states with up to pair interactions at positive temperatures that precisely match targeted forms for both g2(r) and S(k). Among other results, we realize an example with the strongest hyperuniform property among known positive-temperature equilibrium states, critical-point systems (implying unusual 1D systems with phase transitions) that are not in the Ising universality class, systems that attain self-similar pair statistics under Fourier transformation, and an experimentally feasible polymer model. We show that our pair functions enable one to achieve many-particle systems with a wide range of translational order and self-diffusion coefficients D, which are inversely related to one another. One can design other realizable pair statistics via linear combinations of our functions or by applying our inverse procedure to other desirable functional forms. Our approach facilitates the inverse design of materials with desirable physical and chemical properties by tuning their pair statistics.

1.
F. J.
Dyson
, “
Statistical theory of the energy levels of complex systems. I
,”
J. Math. Phys.
3
,
140
156
(
1962
).
2.
R. P.
Feynman
,
Statistical mechanics
(
Westview Press
,
Boulder, Colorado
,
1998
).
3.
K.
Van Workum
and
J. F.
Douglas
, “
Symmetry, equivalence, and molecular self-assembly
,”
Phys. Rev. E
73
,
031502
(
2006
).
4.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
New York
,
1986
).
5.
Y.
Jiao
,
T.
Lau
,
H.
Hatzikirou
,
M.
Meyer-Hermann
,
J. C.
Corbo
, and
S.
Torquato
, “
Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem
,”
Phys. Rev. E
89
,
022721
(
2014
).
6.
D.
Hexner
and
D.
Levine
, “
Hyperuniformity of critical absorbing states
,”
Phys. Rev. Lett.
114
,
110602
(
2015
).
7.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure
(
Springer-Verlag
,
New York
,
2002
).
8.
S.
Torquato
,
Z. W.
Wang
, and
C.
Holm
, “
Swimming in circles can lead to exotic hyperuniform states of active living matter
,”
Proc. Natl. Acad. Sci.
118
,
e2100493118
(
2021
).
9.
D. M.
Nicholson
,
C. Y.
Gao
,
M. T.
McDonnell
,
C. C.
Sluss
, and
D. J.
Keffer
, “
Entropy pair functional theory: Direct entropy evaluation spanning phase transitions
,”
Entropy
23
,
234
(
2021
).
10.
J.-L.
Bretonnet
, “
Self-diffusion coefficient of dense fluids from the pair correlation function
,”
J. Chem. Phys.
117
,
9370
9373
(
2002
).
11.
W. P.
Krekelberg
,
M. J.
Pond
,
G.
Goel
,
V. K.
Shen
,
J. R.
Errington
, and
T. M.
Truskett
,
Phys. Rev. E
80
,
061205
(
2009
).
12.
W. P.
Krekelberg
,
T.
Kumar
,
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
, “
Anomalous structure and dynamics of the Gaussian-core fluid
,”
Phys. Rev. E
79
,
031203
(
2009
).
13.
J. G.
Kirkwood
,
F. P.
Buff
, and
M. S.
Green
, “
The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids
,”
J. Chem. Phys.
17
,
988
994
(
2004
).
14.
N.
Gnan
,
C.
Maggi
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Predicting the effective temperature of a glass
,”
Phys. Rev. Lett.
104
,
125902
(
2010
).
15.
S.
Torquato
, “
Diffusion spreadability as a probe of the microstructure of complex media across length scales
,”
Phys. Rev. E
104
,
054102
(
2021
).
16.
S.
Torquato
,
A.
Scardicchio
, and
C. E.
Zachary
, “
Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory
,”
J. Stat. Mech.: Theory Exp.
2008
,
P11019
.
17.
A.
Soshnikov
,
Russ. Math. Surv.
55
,
923
975
(
2000
).
18.
J. B.
Hough
,
M.
Krishnapur
,
Y.
Peres
, and
B.
Virág
,
Zeros of Gaussian Analytic Functions and Determinantal Point Processes
(
American Mathematical Society
,
Providence, RI
,
2009
), Vol.
51
.
19.
O.
Costin
and
J.
Lebowitz
, “
On the construction of particle distributions with specified single and pair densities
,”
J. Phys. Chem. B
108
,
19614
19618
(
2004
).
20.
B.
Jancovici
, “
Exact results for the two-dimensional one-component plasma
,”
Phys. Rev. Lett.
46
,
386
388
(
1981
).
21.

These include d-dimensional ground-state free fermions (Refs. 2 and 16), eigenvalues for certain random matrices (Refs. 1, 17, and 18), 1D Lorentzian g2(r) [19], and 2D Ginibre ensemble (Ref. 20).

22.
F.
Zernike
and
J. A.
Prins
, “
Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung
,”
Z. Phys. A: Hadrons Nucl.
41
,
184
194
(
1927
).
23.
S.
Torquato
and
F. H.
Stillinger
, “
Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces
,”
Phys. Rev. E
73
,
031106
(
2006
).
24.
H.
Wang
,
F. H.
Stillinger
, and
S.
Torquato
, “
Realizability of iso-g2 processes via effective pair interactions
,”
J. Chem. Phys.
157
,
224106
(
2022
).
25.
S.
Axelrod
,
D.
Schwalbe-Koda
,
S.
Mohapatra
,
J.
Damewood
,
K. P.
Greenman
, and
R.
Gómez-Bombarelli
, “
Learning matter: Materials design with machine learning and atomistic simulations
,”
Acc. Mater. Res.
3
,
343
357
(
2022
).
26.
S.
Torquato
and
F. H.
Stillinger
, “
Controlling the short-range order and packing densities of many-particle systems
,”
J. Phys. Chem. B
106
,
8354
8359
(
2002
), Erratum 106, 11406 (2002).
27.
S.
Torquato
and
F. H.
Stillinger
,
Exp. Math.
15
,
307
331
(
2006
).
28.
M.
Yamada
, “
Geometrical study of the pair distribution function in the many-body problem
,”
Prog. Theor. Phys.
25
,
579
594
(
1961
).
29.
A.
Lenard
, “
Correlation functions and the uniqueness of the state in classical statistical mechanics
,”
Commun. Math. Phys.
30
,
35
44
(
1973
).
30.
T.
Kuna
,
J. L.
Lebowitz
, and
E. R.
Speer
, “
Necessary and sufficient conditions for realizability of point processes
,”
Ann. Appl. Probab.
21
,
1253
1281
(
2011
).
31.
R.
Lachieze-Rey
and
I.
Molchanov
, “
Regularity conditions in the realisability problem with applications to point processes and random closed sets
,”
Ann. Appl. Prob.
25
,
116
149
(
2015
).
32.
G.
Zhang
and
S.
Torquato
, “
Realizable hyperuniform and nonhyperuniform particle configurations with targeted spectral functions via effective pair interactions
,”
Phys. Rev. E
101
,
032124
(
2020
).
33.
S.
Torquato
and
H.
Wang
, “
Precise determination of pair interactions from pair statistics of many-body systems in and out of equilibrium
,”
Phys. Rev. E
106
,
044122
(
2022
).
34.
S.
Torquato
and
F. H.
Stillinger
, “
Local density fluctuations, hyperuniformity, and order metrics
,”
Phys. Rev. E
68
,
041113
(
2003
).
36.
C. E.
Zachary
and
S.
Torquato
, “
Hyperuniformity in point patterns and two-phase random heterogeneous media
,”
J. Stat. Mech.: Theory Exp.
2009
,
P12015
.
37.
S.
Torquato
, “
Structural characterization of many-particle systems on approach to hyperuniform states
,”
Phys. Rev. E
103
,
052126
(
2021
).
38.
B.
Widom
, “
Equation of state in the neighborhood of the critical point
,”
J. Chem. Phys.
43
,
3898
3905
(
1965
).
39.
L. P.
Kadanoff
, “
Scaling laws for ising models near T
c,”
Phys. Phys. Fiz.
2
,
263
272
(
1966
).
40.
M. E.
Fisher
, “
The theory of equilibrium critical phenomena
,”
Rep. Prog. Phys.
30
,
615
(
1967
).
41.
K. G.
Wilson
and
J.
Kogut
, “
The renormalization group and the ε expansion ϵ expansion
,”
Phys. Rep.
12
,
75
199
(
1974
).
42.
J. J.
Binney
,
N. J.
Dowrick
,
A. J.
Fisher
, and
M. E. J.
Newman
,
The Theory of Critical Phenomena: An Introduction to the Renormalization Group
(
Oxford University Press
,
Oxford, England
,
1992
).
43.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W. H. Freeman
,
New York
,
1982
).
44.
E. C.
Oğuz
,
J. E. S.
Socolar
,
P. J.
Steinhardt
, and
S.
Torquato
, “
Hyperuniformity and anti-hyperuniformity in one-dimensional substitution tilings
,”
Acta Crystallogr., Sect. A: Found. Adv.
75
,
3
13
(
2019
).
45.
S.
Torquato
and
F. H.
Stillinger
, “
New duality relations for classical ground states
,”
Phys. Rev. Lett.
100
020602
(
2008
).
46.
S.
Torquato
,
C. E.
Zachary
, and
F. H.
Stillinger
,
Soft Matter
7
,
3780
(
2011
).
47.
S.
Torquato
, “
Reformulation of the covering and quantizer problems as ground states of interacting particles
,”
Phys. Rev. E
82
,
056109
(
2010
).
48.

Here, Fqp(a1,,ap;b1,,bq;z) is the generalized hypergeometric function and berv(z) is the Kelvin function.

49.

Here, G = 0.915… is Catalan’s constant.

50.

Here, λ is a parameter controlling the amplitude of oscillations in the pair statistics. The condition that S(k) ≥ 0 for all k implies that λexp(11/2/2+7/4)/(822+42π)=0.1067.

51.

Here, r* = (4π)1/3r and k* = (4π)−1/3k.

52.

Here, Ci is the cosine integral and Si is the sine integral.

53.

Here r*=πr.

54.

Here, D is the hard-core diameter and A + 1 is the peak height of g2(r) as rD+.

55.
K. S.
Schweizer
and
J. G.
Curro
, “
Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd.
,
1997
), pp.
1
142
.
56.
G.
Yatsenko
,
E. J.
Sambriski
,
M. A.
Nemirovskaya
, and
M.
Guenza
, “
Analytical soft-core potentials for macromolecular fluids and mixtures
,”
Phys. Rev. Lett.
93
,
257803
(
2004
).
57.
S.
Torquato
,
G.
Zhang
, and
F. H.
Stillinger
, “
Ensemble theory for stealthy hyperuniform disordered ground states
,”
Phys. Rev. X
5
,
021020
(
2015
).
58.
R. L.
Henderson
, “
A uniqueness theorem for fluid pair correlation functions
,”
Phys. Lett. A
49
,
197
198
(
1974
).
59.
R. D.
Neidinger
,
SIAM Rev.
52
,
545
563
(
2010
).
60.
A. B.
Norgaard
,
J.
Ferkinghoff-Borg
, and
K.
Lindorff-Larsen
, “
Experimental parameterization of an energy function for the simulation of unfolded proteins
,”
Biophys. J.
94
,
182
192
(
2008
).
61.
J. P.
Hansen
, “
Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma
,”
Phys. Rev. A
8
,
3096
3109
(
1973
).
62.
R. C.
Gann
,
S.
Chakravarty
, and
G. V.
Chester
, “
Monte Carlo simulation of the classical two-dimensional one-component plasma
,”
Phys. Rev. B
20
,
326
344
(
1979
).
63.
P. P.
Ewald
,
Ann. Phys.
369
,
253
287
(
1921
).
64.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
,
503
528
(
1989
).
65.
H.
Wang
and
S.
Torquato
,
Soft Matter
19
,
550
564
(
2023
).
66.
J.
Revels
,
M.
Lubin
, and
T.
Papamarkou
, “
Forward-mode automatic differentiation in Julia
,” arXiv:1607.07892 [cs.MS] (
2016
).
67.
A. K.
Soper
, “
Empirical potential Monte Carlo simulation of fluid structure
,”
Chem. Phys.
202
,
295
306
(
1996
).
68.
L. S.
Ornstein
and
F.
Zernike
, “
Accidental deviations of density and opalescence at the critical point of a single substance
,”
Proc. Akad. Sci. (Amsterdam)
17
,
793
806
(
1914
).
69.
P.
Flory
and
A.
Bueche
, “
Theory of light scattering by polymer solutions
,”
J. Polym. Sci.
27
,
219
229
(
1958
).
70.
J.
Koplik
,
H.
Levine
, and
A.
Zee
, “
Viscosity renormalization in the Brinkman equation
,”
Phys. Fluids
26
,
2864
2870
(
1983
).
71.
N.
Becker
,
A.
Rosa
, and
R.
Everaers
,
Eur. Phys. J. E
32
,
53
69
(
2010
).
72.
F. H.
Stillinger
, “
Phase transitions in the Gaussian core system
,”
J. Chem. Phys.
65
,
3968
(
1976
).
73.
A. A.
Louis
,
P. G.
Bolhuis
, and
J. P.
Hansen
, “
Mean-field fluid behavior of the Gaussian core model
,”
Phys. Rev. E
62
,
7961
7972
(
2000
).
74.
C. E.
Zachary
,
F. H.
Stillinger
, and
S.
Torquato
, “
Gaussian core model phase diagram and pair correlations in high Euclidean dimensions
,”
J. Chem. Phys.
128
,
224505
(
2008
).
75.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
, “
Phase diagram of the Gaussian-core model
,”
Phys. Rev. E
71
,
050102
(
2005
).
76.
M.
Baus
and
J.-P.
Hansen
, “
Statistical mechanics of simple Coulomb systems
,”
Phys. Rep.
59
,
1
94
(
1980
).
78.
E.
Slyk
,
T.
Skora
, and
S.
Kondrat
,
Soft Matter
18
,
5366
5370
(
2022
).
79.
S.
Kragset
,
A.
Sudbø
, and
F. S.
Nogueira
, “
Metal-insulator transition in two- and three-dimensional logarithmic plasmas
,”
Phys. Rev. Lett.
92
,
186403
(
2004
).
80.
K.
Børkje
,
S.
Kragset
, and
A.
Sudbø
, “
Instanton correlators and phase transitions in two- and three-dimensional logarithmic plasmas
,”
Phys. Rev. B
71
,
085112
(
2005
).
81.
S.
Torquato
and
J.
Kim
,
Phys. Rev. X
11
,
021002
(
2021
).
82.
M.
Faliva
and
M. G.
Zoia
, “
A distribution family bridging the Gaussian and the Laplace laws, Gram–Charlier expansions, kurtosis behaviour, and entropy features
,”
Entropy
19
,
149
(
2017
).
83.
C. N.
Likos
,
H.
Löwen
,
M.
Watzlawek
,
B.
Abbas
,
O.
Jucknischke
,
J.
Allgaier
, and
D.
Richter
, “
Star polymers viewed as ultrasoft colloidal particles
,”
Phys. Rev. Lett.
80
,
4450
4453
(
1998
).
84.
J.
Stellbrink
,
J.
Allgaier
,
M.
Monkenbusch
,
D.
Richter
,
A.
Lang
,
C.
Likos
,
M.
Watzlawek
,
H.
Löwen
,
G.
Ehlers
, and
P.
Schleger
, “
Neither Gaussian chains nor hard spheres - Star polymers seen as ultrasoft colloids
,”
Trends in Colloid and Interface Science XIV
(
Springer, Berlin & Heidelberg
,
2000
), pp.
88
92
.
85.
S.
Torquato
,
J. D.
Beasley
, and
Y. C.
Chiew
, “
Two-point cluster function for continuum percolation
,”
J. Chem. Phys.
88
,
6540
6547
(
1988
).
86.
R.
Xu
and
D.
WunschII
, “
Survey of clustering algorithms
,”
IEEE Trans. Neural Networks
16
,
645
678
(
2005
).
87.
J. P.
Donley
,
J. J.
Rajasekaran
, and
A. J.
Liu
, “
Density pair correlation functions for molecular liquids: Approximations for polymers
,”
J. Chem. Phys.
109
,
10499
10512
(
1998
).
88.
A.
Yethiraj
,
H.
Fynewever
, and
C.-Y.
Shew
, “
Density functional theory for pair correlation functions in polymeric liquids
,”
J. Chem. Phys.
114
,
4323
4330
(
2001
).
89.
J.
Wilhelm
and
E.
Frey
, “
Radial distribution function of semiflexible polymers
,”
Phys. Rev. Lett.
77
,
2581
2584
(
1996
).
90.
B. M.
Mladek
,
J.
Fornleitner
,
F. J.
Martinez-Veracoechea
,
A.
Dawid
, and
D.
Frenkel
,
Soft Matter
9
,
7342
7355
(
2013
).
91.
A.
Kumar
and
V.
Molinero
,
J. Phys. Chem. Lett.
8
,
5053
5058
(
2017
).
92.
F.
Martelli
,
S.
Torquato
,
N.
Giovambattista
, and
R.
Car
, “
Large-scale structure and hyperuniformity of amorphous ices
,”
Phys. Rev. Lett.
119
,
136002
(
2017
).
93.
A.
Reńyi
, “
On a one-dimensional problem concerning random space filling
,”
Sel. Trans. Math. Stat. Prob.
4
,
203
218
(
1963
).
94.
B.
Widom
, “
Random sequential addition of hard spheres to a volume
,”
J. Chem. Phys.
44
,
3888
3894
(
1966
).
95.
J.
Liu
and
E.
Luijten
, “
Stabilization of colloidal suspensions by means of highly charged nanoparticles
,”
Phys. Rev. Lett.
93
,
247802
(
2004
).
97.
F. J.
Dyson
, “
Existence of a phase-transition in a one-dimensional Ising ferromagnet
,”
Commun. Math. Phys.
12
,
91
107
(
1969
).
98.
B. A.
Cipra
, “
An introduction to the Ising model
,”
Am. Math. Mon.
94
,
937
959
(
1987
).
99.

The metric τ can still be used to analyze crystals by examining its growth with the system size for finite configurations (Ref. 33).

100.
O. H. E.
Philcox
and
S.
Torquato
, “
Disordered heterogeneous universe: Galaxy distribution and clustering across length scales
,”
Phys. Rev. X
13
,
011038
(
2023
).
101.
Y.
Rosenfeld
, “
A quasi-universal scaling law for atomic transport in simple fluids
,”
J. Phys.: Condens. Matter
11
,
5415
(
1999
).
102.
E.
Lomba
,
J.-J.
Weis
, and
S.
Torquato
, “
Disordered hyperuniformity in two-component nonadditive hard-disk plasmas
,”
Phys. Rev. E
96
,
062126
(
2017
).
103.
M.
Dzugutov
, “
A universal scaling law for atomic diffusion in condensed matter
,”
Nature
381
,
137
139
(
1996
).
104.
G.
Czarnecki
,
M. R.
Dudek
,
A.
Pekalski
, and
J.
Cislo
, “
Tracer diffusion of particles with soft-core interactions studied by Monte Carlo simulations
,”
J. Phys. A: Math. Gen.
29
,
3367
(
1996
).
105.
Z.
Ma
and
S.
Torquato
, “
Random scalar fields and hyperuniformity
,”
J. Appl. Phys.
121
,
244904
(
2017
).
106.
A.
Chremos
and
J. F.
Douglas
, “
Hidden hyperuniformity in soft polymeric materials
,”
Phys. Rev. Lett.
121
,
258002
(
2018
).
107.

These include Gaussian pair statistics, OCP and its Fourier dual, and the hyperbolic secant g2(r).

108.
A. J.
Archer
,
C. N.
Likos
, and
R.
Evans
, “
Binary star-polymer solutions: Bulk and interfacial properties
,”
J. Phys.: Conds. Matter
14
,
12031
(
2002
).
109.
M. E.
Fisher
and
B.
Wiodm
, “
Decay of correlations in linear systems
,”
J. Chem. Phys.
50
,
3756
3772
(
2003
).
110.
F. H.
Stillinger
and
S.
Torquato
, “
Realizability issues for iso-g
(2)
processes
,”
Mol. Phys.
103
,
2943
2949
(
2005
).
111.
N.
Wakao
and
J.
Smith
, “
Diffusion in catalyst pellets
,”
Chem. Eng. Sci.
17
,
825
834
(
1962
).
112.
A. F.
Olea
and
J. K.
Thomas
, “
Rate constants for reactions in viscous media: Correlation between the viscosity of the solvent and the rate constant of the diffusion-controlled reactions
,”
J. Am. Chem. Soc.
110
,
4494
4502
(
1988
).
113.
H.
Wang
and
S.
Torquato
, “
Dynamic measure of hyperuniformity and nonhyperuniformity in heterogeneous media via the diffusion spreadability
,”
Phys. Rev. Appl.
17
,
034022
(
2022
).
114.
R. S.
Langer
and
N. A.
Peppas
,
Biomaterials
2
,
201
214
(
1981
).
115.
H.
Wang
,
PairFunctions Github repository
(
GitHub
,
2023
).

Supplementary Material

You do not currently have access to this content.