Polymer infiltrated nanoporous gold is prepared by infiltrating polymer melts into a bicontinuous, nanoporous gold (NPG) scaffold. Polystyrene (PS) films with molecular weights (Mw) from 424 to 1133 kDa are infiltrated into a NPG scaffold (∼120 nm), with a pore radius (Rp) and pore volume fraction of 37.5 nm and 50%, respectively. The confinement ratios (Γ=RgRp) range from 0.47 to 0.77, suggesting that the polymers inside the pores are moderately confined. The time for PS to achieve 80% infiltration (τ80%) is determined using in situ spectroscopic ellipsometry at 150 °C. The kinetics of infiltration scales weaker with Mw, τ80%Mw1.30±0.20, than expected from bulk viscosity Mw3.4. Furthermore, the effective viscosity of the PS melt inside NPG, inferred from the Lucas–Washburn model, is reduced by more than one order of magnitude compared to the bulk. Molecular dynamics simulation results are in good agreement with experiments predicting scaling as Mw1.4. The reduced dependence of Mw and the enhanced kinetics of infiltration are attributed to a reduction in chain entanglement density during infiltration and a reduction in polymer–wall friction with increasing polymer molecular weight. Compared to the traditional approach involving adding discrete particles into the polymer matrix, these studies show that nanocomposites with higher loading can be readily prepared, and that kinetics of infiltration are faster due to polymer confinement inside pores. These films have potential as actuators when filled with stimuli-responsive polymers as well as polymer electrolyte and fuel cell membranes.

1.
A. C.
Balazs
,
T.
Emrick
, and
T. P.
Russell
, “
Nanoparticle polymer composites: Where two small worlds meet
,”
Science
314
(
5802
),
1107
1110
(
2006
).
2.
J.
Kim
,
E.
Park
,
H.
Moon
,
H.
Son
,
J.
Hong
,
E.
Wi
,
J.-T.
Kwon
,
D. Y.
Seo
,
H.
Lee
, and
Y.
Kim
, “
Estimation of the concentration of nano-carbon black in tire-wear particles using emission factors of PM10, PM2.5, and black carbon
,”
Chemosphere
303
,
134976
(
2022
).
3.
E.
Guth
, “
Theory of filler reinforcement
,”
J. Appl. Phys.
16
(
1
),
20
25
(
1945
).
4.
C. R.
Bilchak
,
E.
Buenning
,
M.
Asai
,
K.
Zhang
,
C. J.
Durning
,
S. K.
Kumar
,
Y.
Huang
,
B. C.
Benicewicz
,
D. W.
Gidley
,
S.
Cheng
,
A. P.
Sokolov
,
M.
Minelli
, and
F.
Doghieri
, “
Polymer-grafted nanoparticle membranes with controllable free volume
,”
Macromolecules
50
(
18
),
7111
7120
(
2017
).
5.
T. C.
Merkel
,
B. D.
Freeman
,
R. J.
Spontak
,
Z.
He
,
I.
Pinnau
,
P.
Meakin
, and
A.
Hill
, “
Ultrapermeable, reverse-selective nanocomposite membranes
,”
Science
296
(
5567
),
519
522
(
2002
).
6.
E. C.
Glor
,
R. C.
Ferrier
,
C.
Li
,
R. J.
Composto
, and
Z.
Fakhraai
, “
Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films
,”
Soft Matter
13
(
11
),
2207
2215
(
2017
).
7.
M. J. A.
Hore
,
A. L.
Frischknecht
, and
R. J.
Composto
, “
Nanorod assemblies in polymer films and their dispersion-dependent optical properties
,”
ACS Macro Lett.
1
(
1
),
115
121
(
2012
).
8.
M. J. A.
Hore
and
R. J.
Composto
, “
Nanorod self-assembly for tuning optical absorption
,”
ACS Nano
4
(
11
),
6941
6949
(
2010
).
9.
C. R.
Bilchak
,
Y.
Huang
,
B. C.
Benicewicz
,
C. J.
Durning
, and
S. K.
Kumar
, “
High-frequency mechanical behavior of pure polymer-grafted nanoparticle constructs
,”
ACS Macro Lett.
8
(
3
),
294
298
(
2019
).
10.
P.
Rittigstein
and
J. M.
Torkelson
, “
Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging
,”
J. Polym. Sci., Part B: Polym. Phys.
44
(
20
),
2935
2943
(
2006
).
11.
G.
Polizos
,
E.
Tuncer
,
A. L.
Agapov
,
D.
Stevens
,
A. P.
Sokolov
,
M. K.
Kidder
,
J. D.
Jacobs
,
H.
Koerner
,
R. A.
Vaia
,
K. L.
More
, and
I.
Sauers
, “
Effect of polymer–nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites
,”
Polymer
53
(
2
),
595
603
(
2012
).
12.
N. M.
Krook
,
C.
Tabedzki
,
K. C.
Elbert
,
K. G.
Yager
,
C. B.
Murray
,
R. A.
Riggleman
, and
R. J.
Composto
, “
Experiments and simulations probing local domain bulge and string assembly of aligned nanoplates in a lamellar diblock copolymer
,”
Macromolecules
52
(
22
),
8989
8999
(
2019
).
13.
N. M.
Krook
,
J.
Ford
,
M.
Maréchal
,
P.
Rannou
,
J. S.
Meth
,
C. B.
Murray
, and
R. J.
Composto
, “
Alignment of nanoplates in lamellar diblock copolymer domains and the effect of particle volume fraction on phase behavior
,”
ACS Macro Lett.
7
(
12
),
1400
1407
(
2018
).
14.
R.
Gómez-Hernández
,
Y.
Panecatl-Bernal
, and
M. Á.
Méndez-Rojas
, “
High yield and simple one-step production of carbon black nanoparticles from waste tires
,”
Heliyon
5
(
7
),
e02139
(
2019
).
15.
C.
,
Z.
Cui
,
Y.
Wang
,
Z.
Li
,
C.
Guan
,
B.
Yang
, and
J.
Shen
, “
Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index
,”
J. Mater. Chem.
13
(
9
),
2189
2195
(
2003
).
16.
J. A.
LaNasa
and
R. J.
Hickey
, “
Surface-initiated ring-opening metathesis polymerization: A method for synthesizing polymer-functionalized nanoparticles exhibiting semicrystalline properties and diverse macromolecular architectures
,”
Macromolecules
53
(
19
),
8216
8232
(
2020
).
17.
S.
Srivastava
and
N. A.
Kotov
, “
Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires
,”
Acc. Chem. Res.
41
(
12
),
1831
1841
(
2008
).
18.
Y.-R.
Huang
,
Y.
Jiang
,
J. L.
Hor
,
R.
Gupta
,
L.
Zhang
,
K. J.
Stebe
,
G.
Feng
,
K. T.
Turner
, and
D.
Lee
, “
Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI)
,”
Nanoscale
7
(
2
),
798
805
(
2015
).
19.
Y.
Jiang
,
J. L.
Hor
,
D.
Lee
, and
K. T.
Turner
, “
Toughening nanoparticle films via polymer infiltration and confinement
,”
ACS Appl. Mater. Interfaces
10
(
50
),
44011
44017
(
2018
).
20.
Y.
Qiang
,
K. T.
Turner
, and
D.
Lee
, “
Role of polymer–nanoparticle interactions on the fracture toughness of polymer-infiltrated nanoparticle films
,”
Macromolecules
56
(
1
),
122
135
(
2023
).
21.
Y.
Qiang
,
S. S.
Pande
,
D.
Lee
, and
K. T.
Turner
, “
The interplay of polymer bridging and entanglement in toughening polymer-infiltrated nanoparticle films
,”
ACS Nano
16
(
4
),
6372
6381
(
2022
).
22.
J.
Biener
,
M. M.
Biener
,
R. J.
Madix
, and
C. M.
Friend
, “
Nanoporous gold: Understanding the origin of the reactivity of a 21st century catalyst made by pre-Columbian technology
,”
ACS Catal.
5
(
11
),
6263
6270
(
2015
).
23.
J.
Li
,
J.
Markmann
,
J.
Weissmüller
, and
N.
Mameka
, “
Nanoporous gold-polypyrrole hybrid electrochemical actuators with tunable elasticity
,”
Acta Mater.
212
,
116852
(
2021
).
24.
S. M.
Maguire
,
C. R.
Bilchak
,
J. S.
Corsi
,
S. S.
Welborn
,
T.
Tsaggaris
,
J.
Ford
,
E.
Detsi
,
Z.
Fakhraai
, and
R. J.
Composto
, “
Effect of nanoscale confinement on polymer-infiltrated scaffold metal composites
,”
ACS Appl. Mater. Interfaces
13
(
37
),
44893
44903
(
2021
).
25.
R. B.
Venkatesh
and
D.
Lee
, “
Interfacial friction controls the motion of confined polymers in the pores of nanoparticle packings
,”
Macromolecules
55
(
19
),
8659
8667
(
2022
).
26.
R. B.
Venkatesh
and
D.
Lee
, “
Conflicting effects of extreme nanoconfinement on the translational and segmental motion of entangled polymers
,”
Macromolecules
55
(
11
),
4492
4501
(
2022
).
27.
J. L.
Hor
,
H.
Wang
,
Z.
Fakhraai
, and
D.
Lee
, “
Effect of physical nanoconfinement on the viscosity of unentangled polymers during capillary rise infiltration
,”
Macromolecules
51
(
14
),
5069
5078
(
2018
).
28.
R. B.
Venkatesh
,
T.
Zhang
,
N.
Manohar
,
K. J.
Stebe
,
R. A.
Riggleman
, and
D.
Lee
, “
Effect of polymer–nanoparticle interactions on solvent-driven infiltration of polymer (SIP) into nanoparticle packings: A molecular dynamics study
,”
Mol. Syst. Des. Eng.
5
(
3
),
666
674
(
2020
).
29.
J. L.
Hor
,
H.
Wang
,
Z.
Fakhraai
, and
D.
Lee
, “
Effects of polymer–nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration
,”
Soft Matter
14
(
13
),
2438
2446
(
2018
).
30.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
(
3
),
273
283
(
1921
).
31.
R.
Lucas
, “
Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten
,”
Kolloid-Z.
23
(
1
),
15
22
(
1918
).
32.
Y.
Yao
,
H.-J.
Butt
,
G.
Floudas
,
J.
Zhou
, and
M.
Doi
, “
Theory on capillary filling of polymer melts in nanopores
,”
Macromol. Rapid Commun.
39
(
14
),
1800087
(
2018
).
33.
G.
Hu
and
B.
Cao
, “
Flows of polymer melts through nanopores: Experiments and modelling
,”
J. Therm. Sci. Technol.
8
(
2
),
363
369
(
2013
).
34.
A.
Shavit
and
R. A.
Riggleman
, “
The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing
,”
Soft Matter
11
(
42
),
8285
8295
(
2015
).
35.
Y.
Yao
,
S.
Alexandris
,
F.
Henrich
,
G.
Auernhammer
,
M.
Steinhart
,
H.-J.
Butt
, and
G.
Floudas
, “
Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina
,”
J. Chem. Phys.
146
(
20
),
203320
(
2017
).
36.
A.
Johner
,
K.
Shin
, and
S.
Obukhov
, “
Nanofluidity of a polymer melt: Breakdown of Poiseuille’s flow model
,”
Europhys. Lett.
91
(
3
),
38002
(
2010
).
37.
K.
Shin
,
S.
Obukhov
,
J.-T.
Chen
,
J.
Huh
,
Y.
Hwang
,
S.
Mok
,
P.
Dobriyal
,
P.
Thiyagarajan
, and
T. P.
Russell
, “
Enhanced mobility of confined polymers
,”
Nat. Mater.
6
(
12
),
961
965
(
2007
).
38.
J.
Zhang
,
J.
Lei
,
W.
Tian
,
G.
Zhang
,
G.
Floudas
, and
J.
Zhou
, “
Capillary filling of polymer chains in nanopores
,”
Macromolecules
56
(
6
),
2258
2267
(
2023
).
39.
Y.
Yao
,
H.-J.
Butt
,
J.
Zhou
,
M.
Doi
, and
G.
Floudas
, “
Capillary imbibition of polymer mixtures in nanopores
,”
Macromolecules
51
(
8
),
3059
3065
(
2018
).
40.
E.
Manias
,
H.
Chen
,
R.
Krishnamoorti
,
J.
Genzer
,
E. J.
Kramer
, and
E. P.
Giannelis
, “
Intercalation kinetics of long polymers in 2 nm confinements
,”
Macromolecules
33
(
21
),
7955
7966
(
2000
).
41.
C.-H.
Tu
,
J.
Zhou
,
M.
Doi
,
H.-J.
Butt
, and
G.
Floudas
, “
Interfacial interactions during in situ polymer imbibition in nanopores
,”
Phys. Rev. Lett.
125
(
12
),
127802
(
2020
).
42.
F.
Wang
,
Z.
Jiang
,
X.
Lin
,
C.
Zhang
,
K.
Tanaka
,
B.
Zuo
,
W.
Zhang
, and
X.
Wang
, “
Suppressed chain entanglement induced by thickness of ultrathin polystyrene films
,”
Macromolecules
54
(
8
),
3735
3743
(
2021
).
43.
N. A.
García
and
J. L.
Barrat
, “
Entanglement reduction induced by geometrical confinement in polymer thin films
,”
Macromolecules
51
(
23
),
9850
9860
(
2018
).
44.
N.-K.
Lee
,
D.
Diddens
,
H.
Meyer
, and
A.
Johner
, “
Local chain segregation and entanglements in a confined polymer melt
,”
Phys. Rev. Lett.
118
(
6
),
067802
(
2017
).
45.
D. M.
Sussman
,
W.-S.
Tung
,
K. I.
Winey
,
K. S.
Schweizer
, and
R. A.
Riggleman
, “
Entanglement reduction and anisotropic chain and primitive path conformations in polymer melts under thin film and cylindrical confinement
,”
Macromolecules
47
(
18
),
6462
6472
(
2014
).
46.
J. F.
Pressly
,
R. A.
Riggleman
, and
K. I.
Winey
, “
Polymer diffusion is fastest at intermediate levels of cylindrical confinement
,”
Macromolecules
51
(
23
),
9789
9797
(
2018
).
47.
T.
Zhang
,
K. I.
Winey
, and
R. A.
Riggleman
, “
Polymer conformations and dynamics under confinement with two length scales
,”
Macromolecules
52
(
1
),
217
226
(
2019
).
48.
F. V.
Luna
,
A. K.
Maurya
,
J. M.
de Souza e Silva
,
G.
Dittrich
,
T.
Paul
,
D.
Enke
,
P.
Huber
,
R.
Wehrspohn
, and
M.
Steinhart
, “
Straight versus spongy: Effect of tortuosity on polymer imbibition into nanoporous matrices assessed by segmentation-free analysis of 3D sample reconstructions
,”
J. Phys. Chem. C
126
(
30
),
12765
12779
(
2022
).
49.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford, NY
,
2003
).
50.
Y.
Ding
,
Y.-J.
Kim
, and
J.
Erlebacher
, “
Nanoporous gold leaf: ‘Ancient technology’/advanced material
,”
Adv. Mater.
16
(
21
),
1897
1900
(
2004
).
51.
A. K.
Ng
,
S. S.
Welborn
, and
E.
Detsi
, “
Time-dependent power law function for the post-dealloying chemical coarsening of nanoporous gold derived using small-angle X-ray scattering
,”
Scr. Mater.
206
,
114215
(
2022
).
52.
S. S.
Welborn
and
E.
Detsi
, “
Small-angle X-ray scattering of nanoporous materials
,”
Nanoscale Horiz.
5
(
1
),
12
24
(
2020
).
53.
S. S.
Welborn
,
S.
Van Der Meer
,
J. S.
Corsi
,
J. T. M.
de Hosson
, and
E.
Detsi
, “
Using X-ray scattering to elucidate the microstructural instability of 3D bicontinuous nanoporous metal scaffolds for use in an aperiodic 3D tricontinuous conductor–insulator–conductor nanocapacitor
,”
ACS Appl. Mater. Interfaces
13
(
10
),
11721
11731
(
2021
).
54.
C.-H.
Tu
,
M.
Steinhart
,
R.
Berger
,
M.
Kappl
,
H.-J.
Butt
, and
G.
Floudas
, “
When crystals flow
,”
Sci. Adv.
9
(
19
),
eadg8865
(
2023
).
55.
T. J.
Boerner
,
S.
Deems
,
T. R.
Furlani
,
S. L.
Knuth
, and
J.
Towns
, “
ACCESS: Advancing innovation: NSF’s advanced cyberinfrastructure coordination Ecosystem: Services & support
,” in
Practice and Experience in Advanced Research Computing; PEARC’23
(
Association for Computing Machinery
,
New York
,
2023
), pp.
173
176
.
56.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
57.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
(
8
),
5057
5086
(
1990
).
58.
R.
Kumar
,
M.
Goswami
,
B. G.
Sumpter
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Effects of backbone rigidity on the local structure and dynamics in polymer melts and glasses
,”
Phys. Chem. Chem. Phys.
15
(
13
),
4604
4609
(
2013
).
59.
V. G.
Mavrantzas
,
T. D.
Boone
,
E.
Zervopoulou
, and
D. N.
Theodorou
, “
End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains
,”
Macromolecules
32
(
15
),
5072
5096
(
1999
).
60.
B. J.
Banaszak
and
J. J.
de Pablo
, “
A new double-rebridging technique for linear polyethylene
,”
J. Chem. Phys.
119
(
4
),
2456
2462
(
2003
).
61.
K.
Hu
,
M.
Ziehmer
,
K.
Wang
, and
E. T.
Lilleodden
, “
Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour
,”
Philos. Mag.
96
(
32–34
),
3322
3335
(
2016
).
62.
E. T.
Lilleodden
and
P. W.
Voorhees
, “
On the topological, morphological, and microstructural characterization of nanoporous metals
,”
MRS Bull.
43
(
1
),
20
26
(
2018
).
63.
A.
Wittstock
,
J.
Biener
, and
M.
Bäumer
, “
Nanoporous gold: A new material for catalytic and sensor applications
,”
Phys. Chem. Chem. Phys.
12
(
40
),
12919
(
2010
).
64.
A.
Michels
and
J.
Weissmüller
, “
Magnetic-field-dependent small-angle neutron scattering on random anisotropy ferromagnets
,”
Rep. Prog. Phys.
71
(
6
),
066501
(
2008
).
65.
Y.
Li
,
J. Q.
Pham
,
K. P.
Johnston
, and
P. F.
Green
, “
Contact angle of water on polystyrene thin films: Effects of CO2 environment and film thickness
,”
Langmuir
23
(
19
),
9785
9793
(
2007
).
66.
R.
Erb
, “
Wettability of gold
,”
J. Phys. Chem.
72
(
7
),
2412
2413
(
1967
).
67.
C.-H.
Tu
,
J.
Zhou
,
H.-J.
Butt
, and
G.
Floudas
, “
Adsorption kinetics of cis-1,4-polyisoprene in nanopores by in situ nanodielectric spectroscopy
,”
Macromolecules
54
(
13
),
6267
6274
(
2021
).
68.
T. G.
Fox
and
P. J.
Flory
, “
Viscosity–molecular weight and viscosity–temperature relationships for polystyrene and polyisobutylene
,”
J. Am. Chem. Soc.
70
(
7
),
2384
2395
(
1948
).
69.
R. H.
Colby
,
L. J.
Fetters
, and
W. W.
Graessley
, “
The melt viscosity-molecular weight relationship for linear polymers
,”
Macromolecules
20
(
9
),
2226
2237
(
1987
).
70.
R.
Masoodi
,
K. M.
Pillai
, and
P. P.
Varanasi
, “
Darcy’s law-based models for liquid absorption in polymer wicks
,”
AIChE J.
53
(
11
),
2769
2782
(
2007
).
71.
J.-W.
Luo
,
L.
Chen
,
T.
Min
,
F.
Shan
,
Q.
Kang
, and
W.
Tao
, “
Macroscopic transport properties of gyroid structures based on pore-scale studies: Permeability, diffusivity and thermal conductivity
,”
Int. J. Heat Mass Transfer
146
,
118837
(
2020
).
72.
R.
Seemann
,
K.
Jacobs
, and
R.
Blossey
, “
Polystyrene nanodroplets
,”
J. Phys.: Condens. Matter
13
(
21
),
4915
4923
(
2001
).
73.
I.
Karapanagiotis
,
D. F.
Evans
, and
W. W.
Gerberich
, “
Dewetting dynamics of thin polystyrene films from sputtered silicon and gold surfaces
,”
Colloids Surf., A
207
(
1–3
),
59
67
(
2002
).
74.
M.
Kröger
,
J. D.
Dietz
,
R. S.
Hoy
, and
C.
Luap
, “
The Z1+ package: Shortest multiple disconnected path for the analysis of entanglements in macromolecular systems
,”
Comput. Phys. Commun.
283
,
108567
(
2023
).
75.
M.
Tarnacka
,
A.
Talik
,
E.
Kamińska
,
M.
Geppert-Rybczyńska
,
K.
Kaminski
, and
M.
Paluch
, “
The impact of molecular weight on the behavior of poly(propylene glycol) derivatives confined within alumina templates
,”
Macromolecules
52
(
9
),
3516
3529
(
2019
).
76.
E. Y.
Lin
,
A. L.
Frischknecht
,
K. I.
Winey
, and
R. A.
Riggleman
, “
Effect of surface properties and polymer chain length on polymer adsorption in solution
,”
J. Chem. Phys.
155
(
3
),
034701
(
2021
).
77.
B.
O’Shaughnessy
and
D.
Vavylonis
, “
Non-equilibrium in adsorbed polymer layers
,”
J. Phys.: Condens. Matter
17
(
2
),
R63
(
2005
).
78.
J.
Zhao
and
S.
Granick
, “
How polymer surface diffusion depends on surface coverage
,”
Macromolecules
40
(
4
),
1243
1247
(
2007
).
79.
E. Y.
Lin
,
A. L.
Frischknecht
, and
R. A.
Riggleman
, “
Chain and segmental dynamics in polymer–nanoparticle composites with high nanoparticle loading
,”
Macromolecules
54
(
12
),
5335
5343
(
2021
).
80.
E. Y.
Lin
,
A. L.
Frischknecht
, and
R. A.
Riggleman
, “
Origin of mechanical enhancement in polymer nanoparticle (NP) composites with ultrahigh NP loading
,”
Macromolecules
53
(
8
),
2976
2982
(
2020
).
81.
J.
Seibert
,
S.
Pfaller
, and
M.
Ries
, “
Investigation of the influence of nano-sized particles on the entanglement distribution of a generic polymer nanocomposite using molecular dynamics
,”
Math. Mech. Solids
(published online
2023
).

Supplementary Material

You do not currently have access to this content.