The utility of UiO-67 Metal–Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF–analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the μ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(μ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone’s ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated.

1.
M.
Kumai
,
A.
Koizumi
,
K.
Saito
,
H.
Sakurai
,
T.
Inoue
,
Y.
Takeuchi
,
I.
Hara
,
M.
Ogata
,
T.
Matsushita
, and
M.
Ikeda
, “
A nationwide survey on organic solvent components in various solvent products: Part 2. Heterogeneous products such as paints, inks and adhesives
,”
Ind. Health
21
(
3
),
185
197
(
1983
).
2.
N. A.
Khan
,
Z.
Hasan
, and
S. H.
Jhung
, “
Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review
,”
J. Hazard. Mater.
244–245
,
444
456
(
2013
).
3.
Y.
Wu
,
D. F.
Liu
,
Y. B.
Wu
,
Y.
Qian
, and
H. X.
Xi
, “
Effect of electrostatic properties of IRMOFs on VOCs adsorption: A density functional theory study
,”
Adsorption
20
(
5-6
),
777
788
(
2014
).
4.
N. S.
Bobbitt
,
M. L.
Mendonca
,
A. J.
Howarth
,
T.
Islamoglu
,
J. T.
Hupp
,
O. K.
Farha
, and
R. Q.
Snurr
, “
Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents
,”
Chem. Soc. Rev.
46
(
11
),
3357
3385
(
2017
).
5.
J. B.
DeCoste
,
G. W.
Peterson
,
H.
Jasuja
,
T. G.
Glover
,
Y. G.
Huang
, and
K. S.
Walton
, “
Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit
,”
J. Mater. Chem. A
1
(
18
),
5642
5650
(
2013
).
6.
C.
Halliday
and
T. A.
Hatton
, “
Sorbents for the capture of CO2 and other acid gases: A review
,”
Ind. Eng. Chem. Res.
60
(
26
),
9313
9346
(
2021
).
7.
J.
DeCoste
and
G.
Peterson
, “
Metal-organic frameworks for air purification of toxic chemicals
,”
Chem. Rev.
114
(
11
),
5695
5727
(
2014
).
8.
S.
Chavan
,
J. G.
Vitillo
,
D.
Gianolio
,
O.
Zavorotynska
,
B.
Civalleri
,
S.
Jakobsen
,
M. H.
Nilsen
,
L.
Valenzano
,
C.
Lamberti
,
K. P.
Lillerud
, and
S.
Bordiga
, “
H2 storage in isostructural UiO-67 and UiO-66 MOFs
,”
Phys. Chem. Chem. Phys.
14
(
5
),
1614
1626
(
2012
).
9.
Y.
Bai
,
Y. B.
Dou
,
L. H.
Xie
,
W.
Rutledge
,
J. R.
Li
, and
H. C.
Zhou
, “
Zr-based metal-organic frameworks: Design, synthesis, structure, and applications
,”
Chem. Soc. Rev.
45
(
8
),
2327
2367
(
2016
).
10.
N.
Li
,
J.
Xu
,
R.
Feng
,
T. L.
Hu
, and
X. H.
Bu
, “
Governing metal-organic frameworks towards high stability
,”
Chem. Commun.
52
(
55
),
8501
8513
(
2016
).
11.
A. M.
Ploskonka
and
J. B.
DeCoste
, “
Tailoring the adsorption and reaction chemistry of the metal–organic frameworks UiO-66, UiO-66-NH2, and HKUST-1 via the incorporation of molecular guests
,”
ACS Appl. Mater. Interfaces
9
(
25
),
21579
21585
(
2017
).
12.
M.
Linders
,
P.
Baak
, and
J.
van Bokhoven
, “
Exploratory investigation of the risk of desorption from activated carbon filters in respiratory protective devices
,”
Ind. Eng. Chem. Res.
46
(
12
),
4034
4039
(
2007
).
13.
A. J.
Howarth
,
Y. Y.
Liu
,
P.
Li
,
Z. Y.
Li
,
T. C.
Wang
,
J.
Hupp
, and
O. K.
Farha
, “
Chemical, thermal and mechanical stabilities of metal-organic frameworks
,”
Nat. Rev. Mater.
1
(
3
),
15018
(
2016
).
14.
L.
Valenzano
,
B.
Civalleri
,
S.
Chavan
,
S.
Bordiga
,
M. H.
Nilsen
,
S.
Jakobsen
,
K. P.
Lillerud
, and
C.
Lamberti
, “
Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory
,”
Chem. Mater.
23
(
7
),
1700
1718
(
2011
).
15.
J. H.
Cavka
,
S.
Jakobsen
,
U.
Olsbye
,
N.
Guillou
,
C.
Lamberti
,
S.
Bordiga
, and
K. P.
Lillerud
, “
A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability
,”
J. Am. Chem. Soc.
130
(
42
),
13850
13851
(
2008
).
16.
R. W.
Morrison
, “
Overview of current collective protection filtration technology
,” in
NBC Defense Collective Protection Conference
(
Guild Associates Inc
,
Baltimore
,
2002
).
17.
C. H.
Sharp
,
J.
Abelard
,
A. M.
Plonka
,
W. W.
Guo
,
C. L.
Hill
, and
J. R.
Morris
, “
Alkane-OH hydrogen bond formation and diffusion energetics of n-butane within UiO-66
,”
J. Phys. Chem. C
121
(
16
),
8902
8906
(
2017
).
18.
J. P.
Ruffley
,
I.
Goodenough
,
T. Y.
Luo
,
M.
Richard
,
E.
Borguet
,
N. L.
Rosi
, and
J. K.
Johnson
, “
Design, synthesis, and characterization of metal-organic frameworks for enhanced sorption of chemical warfare agent simulants
,”
J. Phys. Chem. C
123
(
32
),
19748
19758
(
2019
).
19.
V.
Swaroopa Datta Devulapalli
,
R. P.
McDonnell
,
J. P.
Ruffley
,
P. B.
Shukla
,
T. Y.
Luo
,
M. L.
De Souza
,
P.
Das
,
N. L.
Rosi
,
J.
Karl Johnson
, and
E.
Borguet
, “
Identifying UiO-67 metal-organic framework defects and binding sites through ammonia adsorption
,”
Chemsuschem
15
(
1
),
e202102217
(
2022
).
20.
R. P.
McDonnell
,
V. S. D.
Devulapalli
,
T. H.
Choi
,
L.
McDonnell
,
I.
Goodenough
,
P.
Das
,
N. L.
Rosi
,
J. K.
Johnson
, and
E.
Borguet
, “
Anomalous infrared intensity behavior of acetonitrile diffused into UiO-67
,”
Chem. Mater.
35
(
21
),
8827
8839
(
2023
).
21.
S.
Kwon
,
R.
Vidic
, and
E.
Borguet
, “
The effect of surface chemical functional groups on the adsorption and desorption of a polar molecule, acetone, from a model carbonaceous surface, graphite
,”
Surf. Sci.
522
(
1–3
),
17
26
(
2003
).
22.
X.
Feng
,
C.
Matranga
,
R.
Vidic
, and
E.
Borguet
, “
A vibrational spectroscopic study of the fate of oxygen-containing functional groups and trapped CO2 in single-walled carbon nanotubes during thermal treatment
,”
J. Phys. Chem. B
108
(
52
),
19949
19954
(
2004
).
23.
I.
Goodenough
,
V. S. D.
Devulapalli
,
W.
Xu
,
M. C.
Boyanich
,
T.-Y.
Luo
,
M.
De Souza
,
M.
Richard
,
N. L.
Rosi
, and
E.
Borguet
, “
Interplay between intrinsic thermal stability and expansion properties of functionalized UiO-67 metal–organic frameworks
,”
Chem. Mater.
33
(
3
),
910
920
(
2021
).
24.
P. M.
Donaldson
,
R. F.
Howe
,
A. P.
Hawkins
,
M.
Towrie
, and
G. M.
Greetham
, “
Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts
,”
J. Chem. Phys.
158
(
11
),
114201
(
2023
).
25.
P. A.
Redhead
, “
Thermal desorption of gases
,”
Vacuum
12
(
4
),
203
211
(
1962
).
26.
A. M.
de Jong
and
J. W.
Niemantsverdriet
, “
Thermal desorption analysis: Comparative test of ten commonly applied procedures
,”
Surf. Sci.
233
(
3
),
355
365
(
1990
).
27.
E.
Tomkova
, “
TDS spectra analysis
,”
Surf. Sci.
351
(
1-3
),
309
318
(
1996
).
28.
K. A.
Fichthorn
and
R. A.
Miron
, “
Thermal desorption of large molecules from solid surfaces
,”
Phys. Rev. Lett.
89
(
19
),
196103
(
2002
).
29.
S. L.
Tait
,
Z.
Dohnalek
,
C. T.
Campbell
, and
B. D.
Kay
, “
n-alkanes on MgO(100). II. Chain length dependence of kinetic desorption parameters for small n-alkanes
,”
J. Chem. Phys.
122
(
16
),
164708
(
2005
).
30.
M.
Tylinski
,
R. S.
Smith
, and
B. D.
Kay
, “
Structure and desorption kinetics of acetonitrile thin films on Pt(111) and on graphene on Pt(111)
,”
J. Phys. Chem. C
124
(
4
),
2521
2530
(
2020
).
31.
M.
Minissale
,
Y.
Aikawa
,
E.
Bergin
,
M.
Bertin
,
W. A.
Brown
,
S.
Cazaux
,
S. B.
Charnley
,
A.
Coutens
,
H. M.
Cuppen
,
V.
Guzman
et al, “
Thermal desorption of interstellar ices: A review on the controlling parameters and their implications from snowlines to chemical complexity
,”
ACS Earth Space Chem.
6
(
3
),
597
630
(
2022
).
32.
H.
Eyring
, “
The activated complex in chemical reactions
,”
J. Chem. Phys.
3
(
2
),
107
115
(
1935
).
33.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
2000
).
34.
J. M.
Gottfried
,
E. K.
Vestergaard
,
P.
Bera
, and
C. T.
Campbell
, “
Heat of adsorption of naphthalene on Pt(111) measured by adsorption calorimetry
,”
J. Phys. Chem. B
110
(
35
),
17539
17545
(
2006
).
35.
H.
Goldstein
,
C. P.
Poole
, and
J. L.
Safko
,
Classical Mechanics
(
Addison Wesley
,
2002
).
36.
M. J.
Wilhelm
,
T. J.
Johnson
, and
T. L.
Myers
, “
Disentangling the confounding spectroscopy of C1 molecules: Without symmetry as a guide, everything is allowed
,”
AIP Adv.
13
(
5
),
055133
(
2023
).
37.
P.
Groner
,
E.
Herbst
,
F. C.
De Lucia
,
B. J.
Drouin
, and
H.
Mader
, “
Rotational spectrum of acetone, CH3COCH3, in the first torsional excited state
,”
J. Mol. Struct.
795
(
1-3
),
173
178
(
2006
).
38.
A.
Maeda
,
I. R.
Medvedev
,
F. C.
De Lucia
,
E.
Herbst
, and
E.
Herbst
, “
The millimeter- and submillimeter-wave spectrum of iso-propanol [(CH3)2CHOH]
,”
Astrophys. J., Suppl. Ser.
166
(
2
),
650
658
(
2006
).
39.
K. N.
Kirschner
,
W.
Heiden
, and
D.
Reith
, “
Small alcohols revisited: CCSD(T) relative potential energies for the minima, first- and second-order saddle points, and torsion-coupled surfaces
,”
Acs Omega
3
(
1
),
419
432
(
2018
).
40.
A.
Wolfram
,
Q.
Tariq
,
C. C.
Fernadez
,
M.
Muth
,
M.
Gurrath
,
D.
Wechsler
,
M.
Franke
,
F. J.
Williams
,
H. P.
Steinruck
,
B.
Meyer
et al, “
Adsorption energies of porphyrins on MgO(100): An experimental benchmark for dispersion-corrected density-functional theory
,”
Surf. Sci.
717
,
121979
(
2022
).
41.
D.
Kazachkin
,
Y.
Nishimura
,
S.
Irle
,
K.
Morokuma
,
R. D.
Vidic
, and
E.
Borguet
, “
Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: A combined temperature programmed desorption and theoretical study
,”
Langmuir
24
(
15
),
7848
7856
(
2008
).
42.
S.
Kwon
,
J.
Russell
,
X. C.
Zhao
,
R. D.
Vidic
,
J. K.
Johnson
, and
E.
Borguet
, “
Combined experimental and theoretical investigation of polar organic adsorption/desorption from model carbonaceous surfaces: Acetone on graphite
,”
Langmuir
18
(
7
),
2595
2600
(
2002
).
43.
D. J.
Burke
,
A. J.
Wolff
,
J. L.
Edridge
, and
W. A.
Brown
, “
The adsorption and desorption of ethanol ices from a model grain surface
,”
J. Chem. Phys.
128
(
10
),
104702
(
2008
).
44.
S. D.
Green
,
A. S.
Bolina
,
R.
Chen
,
M. P.
Collings
,
W. A.
Brown
, and
M. R. S.
McCoustra
, “
Applying laboratory thermal desorption data in an interstellar context: Sublimation of methanol thin films
,”
Mon. Not. R. Astron. Soc.
398
(
1
),
357
367
(
2009
).
45.
J. E.
Schaff
and
J. T.
Roberts
, “
Toward an understanding of the surface chemical properties of ice: Differences between the amorphous and crystalline surfaces
,”
J. Phys. Chem.
100
(
33
),
14151
14160
(
1996
).
46.
J.
Goering
,
E.
Kadossov
, and
U.
Burghaus
, “
Adsorption kinetics of alcohols on single-wall carbon nanotubes: An ultrahigh vacuum surface chemistry study
,”
J. Phys. Chem. C
112
(
27
),
10114
10124
(
2008
).
47.
S. A.
Ayling
,
D. J.
Burke
,
T. L.
Salter
, and
W. A.
Brown
, “
Desorption and crystallisation of binary 2-propanol and water ices adsorbed on graphite
,”
RSC Adv.
7
,
51621
(
2017
).
48.
Y.
An
,
A.
Kleinhammes
,
P.
Doyle
,
E. Y.
Chen
,
Y.
Song
,
A. J.
Morris
,
B.
Gibbons
,
M.
Cai
,
J. K.
Johnson
,
P. B.
Shukla
et al, “
In situ nuclear magnetic resonance investigation of molecular adsorption and kinetics in metal-organic framework UiO-66
,”
J. Phys. Chem. Lett.
12
(
2
),
892
899
(
2021
).
49.
C. V.
Mhatre
,
J. J.
Wardzala
,
P. B.
Shukla
,
M.
Agrawal
, and
J. K.
Johnson
, “
Calculation of self, corrected, and transport diffusivities of isopropyl alcohol in UiO-66
,”
Nanomaterials
13
(
11
),
1793
(
2023
).
50.
R. L.
Hudson
,
P. A.
Gerakines
, and
R. F.
Ferrante
, “
IR spectra and properties of solid acetone, an interstellar and cometary molecule
,”
Spectrochim. Acta, Part A
193
,
33
39
(
2018
).
51.
S. W.
Han
and
K.
Kim
, “
Infrared matrix isolation study of acetone and methanol in solid argon
,”
J. Phys. Chem.
100
(
43
),
17124
17132
(
1996
).
52.
W.
Hagen
,
A. G. G. M.
Tielens
, and
J. M.
Greenberg
, “
A laboratory study of the infrared spectra of interstellar ices
,”
Astron. Astrophys., Suppl. Ser.
51
,
389
416
(
1983
).
53.
J.
Guan
,
Y.
Hu
,
M.
Xie
, and
E. R.
Bernstein
, “
Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy
,”
Chem. Phys.
405
,
117
123
(
2012
).
54.
J.-J.
Max
and
C.
Chapados
, “
Infrared spectroscopy of acetone–water liquid mixtures. I. Factor analysis
,”
J. Chem. Phys.
119
,
5632
5643
(
2003
).
55.
J. J.
Wardzala
,
J. P.
Ruffley
,
I.
Goodenough
,
A. M.
Schmidt
,
P. B.
Shukla
,
X.
Wei
,
A.
Bagusetty
,
M.
De Souza
,
P.
Das
,
D. J.
Thompson
et al, “
Modeling of diffusion of acetone in UiO-66
,”
J. Phys. Chem. C
124
(
52
),
28469
28478
(
2020
).
56.
D. V.
Kazachkin
,
Y.
Nishimura
,
H. A.
Witek
,
S.
Irle
, and
E.
Borguet
, “
Dramatic reduction of IR vibrational cross sections of molecules encapsulated in carbon nanotubes
,”
J. Am. Chem. Soc.
133
(
21
),
8191
8198
(
2011
).
57.
S.
Shin
,
H.
Kang
,
J. S.
Kim
, and
H.
Kang
, “
Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy
,”
J. Phys. Chem. B
118
(
47
),
13349
13356
(
2014
).
58.
E.
Borguet
and
H. L.
Dai
, “
Site-specific properties and dynamical dipole coupling of CO molecules adsorbed on a vicinal Cu(100) surface
,”
J. Chem. Phys.
101
(
10
),
9080
9095
(
1994
).
59.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Dover Publications
,
1980
).
60.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
1998
).
61.
P.
Lalanne
,
J. M.
Andanson
,
J.-C.
Soetens
,
T.
Tassaing
,
Y.
Danten
, and
M.
Besnard
, “
Hydrogen bonding in supercritical ethanol assessed by infrared and Raman spectroscopies
,”
J. Phys. Chem. A
108
,
3902
3909
(
2004
).
62.
V.
Balevicius
,
V.
Sablinskas
,
I.
Doroshenko
, and
V.
Pogorelov
, “
Propanol clustering in argon matrix: 2D FTIR correlation spectroscopy
,”
Ukr. J. Phys.
56
(
8
),
855
860
(
2022
).
63.
N.
Sugawara
,
P.-J.
Hsu
,
A.
Fujii
, and
J.-L.
Kuo
, “
Competition between hydrogen bonds and van der Waals forces in intermolecular structure formation of protonated branched-chain alcohol clusters
,”
Phys. Chem. Chem. Phys.
20
(
39
),
25482
25494
(
2018
).
64.
Y.-H.
Yeh
,
R. J.
Gorte
,
S.
Rangarajan
, and
M.
Mavrikakis
, “
Adsorption of small alkanes on ZSM-5 zeolites: Influence of brønsted sites
,”
J. Phys. Chem. C
120
(
22
),
12132
12138
(
2016
).
65.
Summary of Key Physical Data for Solvents. Fisher Scientific UK Ltd.,
2021
. https://www.fishersci.co.uk/gb/en/scientific-products/technical-tools/summary-key-physical-data-solvents.html (accessed July 22, 2021).
66.
L. R.
Snyder
, “
Classification of the solvent properties of common liquids
,”
J. Chromatogr. A
92
(
2
),
223
230
(
1974
).
67.
S. G.
Olesen
and
S.
Hammerum
, “
Hydrogen bonding to alkanes: Computational evidence
,”
J. Phys. Chem. A
113
(
27
),
7940
7944
(
2009
).
68.
P. B.
Shukla
and
J. K.
Johnson
, “
Impact of loading-dependent intrinsic framework flexibility on adsorption in UiO-66
,”
J. Phys. Chem. C
126
(
41
),
17699
17711
(
2022
).

Supplementary Material

You do not currently have access to this content.