Dye-sensitized photocatalysts with molecular dyes and widegap semiconductors have attracted attention because of their design flexibility, for example, tunable light absorption for visible-light water splitting. Although organic dyes are promising candidates as metal-free photosensitizers in dye-sensitized photocatalysts, their efficiency in H2 production has far been unsatisfactory compared to that of metal-complex photosensitizers, such as Ru(II) tris-diimine-type complexes. Here, we demonstrate the substantial improvement of carbazole–thiophene-based dyes used for dye-sensitized photocatalysts through systematic molecular design of the number of thiophene rings, substituents in the thiophene moiety, and the anchoring group. The optimized carbazole–thiophene dye-sensitized layered niobate exhibited a quantum efficiency of 0.3% at 460 nm for H2 evolution using a redox-reversible I electron donor, which is six-times higher than that of the best coumarin-based metal-free dye reported to date. The dye-sensitized photocatalyst also facilitated overall water splitting when combined with a WO3-based O2-evolving photocatalyst and an I3/I redox shuttle mediator. The present metal-free dye provided a high dye-based turnover frequency for water splitting, comparable to that of the state-of-the-art Ru(II) tris-diimine-type photosensitizer, by simple adsorption onto a layered niobate. Thus, this study highlights the potential of metal-free organic dyes with appropriate molecular designs for the development of efficient water splitting.

1.
T.
Takata
,
J.
Jiang
,
Y.
Sakata
,
M.
Nakabayashi
,
N.
Shibata
,
V.
Nandal
,
K.
Seki
,
T.
Hisatomi
, and
K.
Domen
,
Nature
581
,
411
(
2020
).
2.
S.
Nishioka
,
F. E.
Osterloh
,
X.
Wang
,
T. E.
Mallouk
, and
K.
Maeda
,
Nat. Rev. Methods Primers
3
,
42
(
2023
).
4.
Q.
Wang
,
M.
Nakabayashi
,
T.
Hisatomi
,
S.
Sun
,
S.
Akiyama
,
Z.
Wang
,
Z.
Pan
,
X.
Xiao
,
T.
Watanabe
,
T.
Yamada
,
N.
Shibata
,
T.
Takata
, and
K.
Domen
,
Nat. Mater.
18
,
827
(
2019
).
5.
H.
Kageyama
,
K.
Hayashi
,
K.
Maeda
,
J. P.
Attfield
,
Z.
Hiroi
,
J. M.
Rondinelli
, and
K. R.
Poeppelmeier
,
Nat. Commun.
9
,
772
(
2018
).
6.
H.
Fujito
,
H.
Kunioku
,
D.
Kato
,
H.
Suzuki
,
M.
Higashi
,
H.
Kageyama
, and
R.
Abe
,
J. Am. Chem. Soc.
138
,
2082
(
2016
).
7.
A.
Kudo
and
Y.
Miseki
,
Chem. Soc. Rev.
38
,
253
(
2009
).
8.
W. J.
Youngblood
,
S.-H. A.
Lee
,
K.
Maeda
, and
T. E.
Mallouk
,
Acc. Chem. Res.
42
,
1966
(
2009
).
9.
G. B.
Saupe
,
T. E.
Mallouk
,
W.
Kim
, and
R. H.
Schmehl
,
J. Phys. Chem. B
101
,
2508
(
1997
).
10.
R.
Abe
,
K.
Shinmei
,
K.
Hara
, and
B.
Ohtani
,
Chem. Commun.
2009
,
3577
.
11.
R.
Abe
,
K.
Shinmei
,
N.
Koumura
,
K.
Hara
, and
B.
Ohtani
,
J. Am. Chem. Soc.
135
,
16872
(
2013
).
12.
S.
Nishioka
,
K.
Hojo
,
L.
Xiao
,
T.
Gao
,
Y.
Miseki
,
S.
Yasuda
,
T.
Yokoi
,
K.
Sayama
,
T. E.
Mallouk
, and
K.
Maeda
,
Sci. Adv.
8
,
eadc9115
(
2022
).
13.
M.
Grätzel
,
J. Photochem. Photobiol., C
4
,
145
(
2003
).
14.
A.
Hagfeldt
,
G.
Boschloo
,
L.
Sun
,
L.
Kloo
, and
H.
Pettersson
,
Chem. Rev.
110
,
6595
(
2010
).
15.
Y.
Wu
and
W.
Zhu
,
Chem. Soc. Rev.
42
,
2039
(
2013
).
16.
A.
Mishra
,
M. K.
Fischer
, and
P.
Bauerle
,
Angew. Chem., Int. Ed.
48
,
2474
(
2009
).
17.
Y.
Miseki
,
S.
Fujiyoshi
,
T.
Gunji
, and
K.
Sayama
,
Catal. Sci. Technol.
3
,
1750
(
2013
).
18.
Z. S.
Wang
,
N.
Koumura
,
Y.
Cui
,
M.
Takahashi
,
H.
Sekiguchi
,
A.
Mori
,
T.
Kubo
,
A.
Furube
, and
K.
Hara
,
Chem. Mater.
20
,
3993
(
2008
).
19.
Y. I. I.
Kim
,
S. J.
Atherton
,
E. S.
Brigham
, and
T. E.
Mallouk
,
J. Phys. Chem.
97
,
11802
(
1993
).
20.
K.
Maeda
,
T.
Oshima
, and
O.
Ishitani
,
Phys. Chem. Chem. Phys.
17
,
17962
(
2015
).
21.
A.
Nakada
,
R.
Kuriki
,
K.
Sekizawa
,
S.
Nishioka
,
J. J. M.
Vequizo
,
O.
Ishitani
, and
K.
Maeda
,
ACS Catal.
8
,
9744
(
2018
).
22.
N.
Koumura
,
Z. S.
Wang
,
S.
Mori
,
M.
Miyashita
,
E.
Suzuki
, and
K.
Hara
,
J. Am. Chem. Soc.
128
,
14256
(
2006
).
23.
J.
Ogawa
,
N.
Koumura
,
K.
Hara
, and
S.
Mori
,
Jpn. J. Appl. Phys.
53
,
127301
(
2014
).
24.
H.
Tsubomura
,
Y.
Shimoura
, and
S.
Fujiwara
,
J. Phys. Chem.
83
,
2103
(
1979
).
25.
R.
Katoh
,
A.
Furube
,
S.
Mori
,
M.
Miyashita
,
K.
Sunahara
,
N.
Koumura
, and
K.
Hara
,
Energy Environ. Sci.
2
,
542
(
2009
).
26.
E.
Bae
,
W.
Choi
,
J.
Park
,
H. S.
Shin
,
S. B.
Kim
, and
J. S.
Lee
,
J. Phys. Chem. B
108
,
14093
(
2004
).
27.
H.
Nishiyama
,
T.
Yamada
,
M.
Nakabayashi
,
Y.
Maehara
,
M.
Yamaguchi
,
Y.
Kuromiya
,
Y.
Nagatsuma
,
H.
Tokudome
,
S.
Akiyama
,
T.
Watanabe
,
R.
Narushima
,
S.
Okunaka
,
N.
Shibata
,
T.
Takata
,
T.
Hisatomi
, and
K.
Domen
,
Nature
598
,
304
(
2021
).
28.
T.
Oshima
,
S.
Nishioka
,
Y.
Kikuchi
,
S.
Hirai
,
K. I.
Yanagisawa
,
M.
Eguchi
,
Y.
Miseki
,
T.
Yokoi
,
T.
Yui
,
K.
Kimoto
,
K.
Sayama
,
O.
Ishitani
,
T. E.
Mallouk
, and
K.
Maeda
,
J. Am. Chem. Soc.
142
,
8412
(
2020
).

Supplementary Material

You do not currently have access to this content.