We investigate the hot carrier and exciton dynamics in two-dimensional (2D) metal halide perovskites using time-resolved spectroscopy. 2D perovskite films were prepared with and without dimethyl sulfoxide treatment to elucidate the effect of film processing techniques on optoelectronic properties. Femtosecond transient absorption measurements reveal that the charge carrier dynamics are different in the two samples, and excitons survive for a longer time in the treated sample than the untreated one. While the early-time carrier dynamics in the untreated sample are dominated by charges trapped by defect states, the hot free carriers govern the dynamics in the treated sample due to fewer defects in it. Morphological and other spectroscopic studies, including time-resolved photoluminescence, further suggest the formation of more defects in the untreated sample. These results can guide the future development of efficient 2D perovskite-based optoelectronic devices.

1.
X.
Du
,
J.
Li
,
G.
Niu
,
J.-H.
Yuan
,
K.-H.
Xue
,
J. E.
Halpert
,
M.
Xia
,
W.
Pan
,
X.
Yang
,
B.
Zhu
, and
J.
Tang
, “
Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging
,”
Nat. Commun.
12
(
1
),
3348
(
2021
).
2.
M. M.
Lee
,
J.
Teuscher
,
T.
Miyasaka
,
T. N.
Murakami
, and
H. J.
Snaith
, “
Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
,”
Science
338
(
6107
),
643
647
(
2012
).
3.
V.
D’Innocenzo
,
A. R.
Srimath Kandada
,
M.
De Bastiani
,
M.
Gandini
, and
A.
Petrozza
, “
Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite
,”
J. Am. Chem. Soc.
136
(
51
),
17730
17733
(
2014
).
4.
F.
Deschler
,
M.
Price
,
S.
Pathak
,
L. E.
Klintberg
,
D.-D.
Jarausch
,
R.
Higler
,
S.
Hüttner
,
T.
Leijtens
,
S. D.
Stranks
,
H. J.
Snaith
et al, “
High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors
,”
J. Phys. Chem. Lett.
5
(
8
),
1421
1426
(
2014
).
5.
S.
Ghosh
,
S. K.
Pal
,
K. J.
Karki
, and
T.
Pullerits
, “
Ion migration heals trapping centers in CH3NH3PbBr3 perovskite
,”
ACS Energy Lett.
2
(
9
),
2133
2139
(
2017
).
6.
Z.
Guo
,
J. S.
Manser
,
Y.
Wan
,
P. V.
Kamat
, and
L.
Huang
, “
Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy
,”
Nat. Commun.
6
(
1
),
7471
(
2015
).
7.
J. S.
Manser
,
J. A.
Christians
, and
P. V.
Kamat
, “
Intriguing optoelectronic properties of metal halide perovskites
,”
Chem. Rev.
116
(
21
),
12956
13008
(
2016
).
8.
D. B.
Straus
and
C. R.
Kagan
, “
Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties
,”
J. Phys. Chem. Lett.
9
(
6
),
1434
1447
(
2018
).
9.
K.
Wang
,
J. Y.
Park
,
Akriti
, and
L.
Dou
, “
Two-dimensional halide perovskite quantum-well emitters: A critical review
,”
EcoMat
3
(
3
),
e12104
(
2021
).
10.
X.
Gao
,
X.
Zhang
,
W.
Yin
,
H.
Wang
,
Y.
Hu
,
Q.
Zhang
,
Z.
Shi
,
V. L.
Colvin
,
W. W.
Yu
, and
Y.
Zhang
, “
Ruddlesden–Popper perovskites: Synthesis and optical properties for optoelectronic applications
,”
Adv. Sci.
6
(
22
),
1900941
(
2019
).
11.
C.
Hanmandlu
,
A.
Singh
,
K. M.
Boopathi
,
C.-S.
Lai
, and
C.-W.
Chu
, “
Layered perovskite materials: Key solutions for highly efficient and stable perovskite solar cells
,”
Rep. Prog. Phys.
83
(
8
),
086502
(
2020
).
12.
P. P.
Mohanty
,
R.
Ahuja
, and
S.
Chakraborty
, “
Progress and challenges in layered two-dimensional hybrid perovskites
,”
Nanotechnology
33
(
29
),
292501
(
2022
).
13.
C. M. M.
Soe
,
W.
Nie
,
C. C.
Stoumpos
,
H.
Tsai
,
J. C.
Blancon
,
F.
Liu
,
J.
Even
,
T. J.
Marks
,
A. D.
Mohite
, and
M. G.
Kanatzidis
, “
Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high-efficiency solar cells
,”
Adv. Energy Mater.
8
(
1
),
1700979
(
2018
).
14.
E.-B.
Kim
,
M. S.
Akhtar
,
H.-S.
Shin
,
S.
Ameen
, and
M. K.
Nazeeruddin
, “
A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances
,”
J. Photochem. Photobiol. C: Photochem. Rev.
48
,
100405
(
2021
).
15.
L.
Min
,
W.
Tian
,
F.
Cao
,
J.
Guo
, and
L.
Li
, “
2D Ruddlesden–Popper perovskite with ordered phase distribution for high performance self powered photodetectors
,”
Adv. Mater.
33
(
35
),
2101714
(
2021
).
16.
Y.
Xu
,
M.
Wang
,
Y.
Lei
,
Z.
Ci
, and
Z.
Jin
, “
Crystallization kinetics in 2D perovskite solar cells
,”
Adv. Energy Mater.
10
(
43
),
2002558
(
2020
).
17.
D. W.
de Quilettes
,
S. M.
Vorpahl
,
S. D.
Stranks
,
H.
Nagaoka
,
G. E.
Eperon
,
M. E.
Ziffer
,
H. J.
Snaith
, and
D. S.
Ginger
, “
Impact of microstructure on local carrier lifetime in perovskite solar cells
,”
Science
348
(
6235
),
683
686
(
2015
).
18.
Y.
Lei
,
Y.
Xu
,
M.
Wang
,
G.
Zhu
, and
Z.
Jin
, “
Origin, influence, and countermeasures of defects in perovskite solar cells
,”
Small
17
(
26
),
2005495
(
2021
).
19.
J.-S.
Park
,
J.
Calbo
,
Y.-K.
Jung
,
L. D.
Whalley
, and
A.
Walsh
, “
Accumulation of deep traps at grain boundaries in halide perovskites
,”
ACS Energy Lett.
4
(
6
),
1321
1327
(
2019
).
20.
A. A.
Mamun
,
T. T.
Ava
,
H. J.
Jeong
,
M. S.
Jeong
, and
G.
Namkoong
, “
A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications
,”
Phys. Chem. Chem. Phys.
19
(
13
),
9143
9148
(
2017
).
21.
J.-S.
Park
and
A.
Walsh
, “
Modeling grain boundaries in polycrystalline halide perovskite solar cells
,”
Annu. Rev. Condens. Matter Phys.
12
,
95
109
(
2021
).
22.
M.
Yang
,
Y.
Zeng
,
Z.
Li
,
D. H.
Kim
,
C.-S.
Jiang
,
J.
Van De Lagemaat
, and
K.
Zhu
, “
Do grain boundaries dominate non-radiative recombination in CH3NH3PbI3 perovskite thin films?
,”
Phys. Chem. Chem. Phys.
19
(
7
),
5043
5050
(
2017
).
23.
M.
Kundar
,
S.
Bhandari
,
S.
Chung
,
K.
Cho
,
S. K.
Sharma
,
R.
Singh
, and
S. K.
Pal
, “
Surface passivation by sulfur-based 2D (TEA)2PbI4 for stable and efficient perovskite solar cells
,”
ACS Omega
8
,
12842
(
2023
).
24.
J.-W.
Lee
,
S.-H.
Bae
,
N.
De Marco
,
Y.-T.
Hsieh
,
Z.
Dai
, and
Y.
Yang
, “
The role of grain boundaries in perovskite solar cells
,”
Mater. Today Energy
7
,
149
160
(
2018
).
25.
J.
Zhang
,
L.
Zhang
,
X.
Li
,
X.
Zhu
,
J.
Yu
, and
K.
Fan
, “
Binary solvent engineering for high-performance two-dimensional perovskite solar cells
,”
ACS Sustainable Chem. Eng.
7
(
3
),
3487
3495
(
2019
).
26.
B.
Hwang
,
Y.
Park
, and
J.-S.
Lee
, “
Impact of grain size on the optoelectronic performance of 2D Ruddlesden–Popper perovskite-based photodetectors
,”
J. Mater. Chem. C
9
(
1
),
110
116
(
2021
).
27.
B.
Upadhyay
,
R.
Sharma
,
D.
Maity
,
T. N.
Narayan
, and
S. K.
Pal
, “
Ultrafast carrier dynamics in vanadium-doped MoS2 alloys
,”
Nanoscale
15
,
16344
(
2023
).
28.
A.
Soni
,
D.
Kushavah
,
L.-S.
Lu
,
W.-H.
Chang
, and
S. K.
Pal
, “
Efficient multiple exciton generation in monolayer MoS2
,”
J. Phys. Chem. Lett.
14
(
12
),
2965
2972
(
2023
).
29.
G.
Folpini
,
L.
Gatto
,
D.
Cortecchia
,
M.
Devetta
,
G.
Crippa
,
C.
Vozzi
,
S.
Stagira
,
A.
Petrozza
, and
E.
Cinquanta
, “
Ultrafast charge carrier dynamics in quantum confined 2D perovskite
,”
J. Chem. Phys.
152
(
21
),
214705
(
2020
).
30.
X.
Wu
,
M. T.
Trinh
, and
X.-Y.
Zhu
, “
Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells
,”
J. Phys. Chem. C
119
(
26
),
14714
14721
(
2015
).
31.
O.
Yaffe
,
A.
Chernikov
,
Z. M.
Norman
,
Y.
Zhong
,
A.
Velauthapillai
,
A.
Van Der Zande
,
J. S.
Owen
, and
T. F.
Heinz
, “
Excitons in ultrathin organic–inorganic perovskite crystals
,”
Phys. Rev. B
92
(
4
),
045414
(
2015
).
32.
A. A.
Sutanto
,
N.
Drigo
,
V. I.
Queloz
,
I.
Garcia-Benito
,
A. R.
Kirmani
,
L. J.
Richter
,
P. A.
Schouwink
,
K. T.
Cho
,
S.
Paek
,
M. K.
Nazeeruddin
, and
G.
Grancini
, “
Dynamical evolution of the 2D/3D interface: A hidden driver behind perovskite solar cell instability
,”
J. Mater. Chem. A
8
(
5
),
2343
2348
(
2020
).
33.
A. K.
Pal
, “
Grain-boundary scattering in semiconductor films
,”
Bull. Mater. Sci.
17
(
7
),
1251
1258
(
1994
).
34.
H.
Yue
,
D.
Song
,
S.
Zhao
,
Z.
Xu
,
B.
Qiao
,
S.
Wu
, and
J.
Meng
, “
Highly bright perovskite light-emitting diodes based on quasi-2D perovskite film through synergetic solvent engineering
,”
RSC Adv.
9
(
15
),
8373
8378
(
2019
).
35.
V. S.
Chirvony
,
I.
Suárez
,
J.
Rodríguez-Romero
,
R.
Vázquez-Cárdenas
,
J.
Sanchez-Diaz
,
A.
Molina-Sánchez
,
E. M.
Barea
,
I.
Mora-Seró
, and
J. P.
Martínez-Pastor
, “
Inhomogeneous broadening of photoluminescence spectra and kinetics of nanometer-thick (phenethylammonium)2PbI4 perovskite thin films: Implications for optoelectronics
,”
ACS Appl. Nano Mater.
4
(
6
),
6170
6177
(
2021
).
36.
A.
Zanetta
,
Z.
Andaji‐Garmaroudi
,
V.
Pirota
,
G.
Pica
,
F. U.
Kosasih
,
L.
Gouda
,
K.
Frohna
,
C.
Ducati
,
F.
Doria
,
S. D.
Stranks
, and
G.
Grancini
, “
Manipulating color emission in 2D hybrid perovskites by fine tuning halide segregation: A transparent green emitter
,”
Adv. Mater.
34
(
1
),
2105942
(
2022
).
37.
M.
Adnan
and
G. V.
Prakash
, “
Study of surface and bulk recombination kinetics of two-dimensional inorganic–organic hybrid semiconductors under linear and nonlinear femtosecond transient absorption analysis
,”
J. Phys. Chem. C
125
(
22
),
12166
12174
(
2021
).
38.
V. V.
Klimov
,
S.
Hunsche
, and
H.
Kurz
, “
Biexciton effects in femtosecond nonlinear transmission of semiconductor quantum dots
,”
Phys. Rev. B
50
(
11
),
8110
8113
(
1994
).
39.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegmann
,
T. H.
Wood
, and
C. A.
Burrus
, “
Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect
,”
Phys. Rev. Lett.
53
(
22
),
2173
2176
(
1984
).
40.
K.
Fan
,
C. C. S.
Chan
,
L.
Yuan
,
K.
Yan
, and
K. S.
Wong
, “
New insights into hot-charge relaxation in lead halide perovskite: Dynamical bandgap change, hot-biexciton effect, and photo-bleaching shift
,”
ACS Photonics
9
(
7
),
2304
2314
(
2022
).
41.
A.
Von Lehmen
,
D. S.
Chemla
,
J. P.
Heritage
, and
J. E.
Zucker
, “
Optical Stark effect on excitons in GaAs quantum wells
,”
Opt. Lett.
11
(
10
),
609
611
(
1986
).
42.
M. B.
Price
,
J.
Butkus
,
T. C.
Jellicoe
,
A.
Sadhanala
,
A.
Briane
,
J. E.
Halpert
,
K.
Broch
,
J. M.
Hodgkiss
,
R. H.
Friend
, and
F.
Deschler
, “
Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites
,”
Nat. Commun.
6
,
8420
(
2015
).
43.
M. T.
Trinh
,
X.
Wu
,
D.
Niesner
, and
X. Y.
Zhu
, “
Many-body interactions in photo-excited lead iodide perovskite
,”
J. Mater. Chem. A
3
(
17
),
9285
9290
(
2015
).
44.
S.
Ghosh
,
R.
Ray
, and
S. K.
Pal
, “
Ultrafast many-particle phenomena in lead bromide hybrid perovskite nanocrystals under strong optical excitation
,”
J. Phys. Chem. C
125
(
5
),
3198
3205
(
2021
).
45.
G.
Ammirati
,
F.
Martelli
,
P.
O'Keeffe
,
S.
Turchini
,
A.
Paladini
,
M.
Palummo
,
G.
Giorgi
,
M.
Cinquino
,
M.
De Giorgi
,
L.
De Marco
, and
D.
Catone
, “
Band structure and exciton dynamics in quasi-2D dodecylammonium halide perovskites
,”
Adv. Opt. Mater.
11
,
2201874
(
2023
).
46.
K.
Fan
,
C. C. S.
Chan
,
L.
Yuan
,
K.
Yan
, and
K. S.
Wong
, “
Hot-charge relaxation in lead halide perovskite: Uncovering the bandgap dynamics, hot-biexciton effect and photo-bleaching shift
,” in
International Conference on Ultrafast Phenomena
(
Optica Publishing Group
,
2022
), p.
Tu4A 17
.
47.
P. D.
Cunningham
,
K. M.
McCreary
,
A. T.
Hanbicki
,
M.
Currie
,
B. T.
Jonker
, and
L. M.
Hayden
, “
Charge trapping and exciton dynamics in large-area CVD grown MoS2
,”
J. Phys. Chem. C
120
(
10
),
5819
5826
(
2016
).
48.
X.
Li
,
X.
Lian
,
J.
Pang
,
B.
Luo
,
Y.
Xiao
,
M. D.
Li
,
X. C.
Huang
, and
J. Z.
Zhang
, “
Defect-related broadband emission in two-dimensional lead bromide perovskite microsheets
,”
J. Phys. Chem. Lett.
11
(
19
),
8157
8163
(
2020
).
49.
X.
Wen
,
Y.
Feng
,
S.
Huang
,
F.
Huang
,
Y.-B.
Cheng
,
M.
Green
, and
A.
Ho-Baillie
, “
Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites
,”
J. Mater. Chem. C
4
(
4
),
793
800
(
2016
).
50.
T.
Zhang
,
C.
Zhou
,
X.
Feng
,
N.
Dong
,
H.
Chen
,
X.
Chen
,
L.
Zhang
,
J.
Lin
, and
J.
Wang
, “
Regulation of the luminescence mechanism of two-dimensional tin halide perovskites
,”
Nat. Commun.
13
(
1
),
60
(
2022
).
51.
D.
Giovanni
,
W. K.
Chong
,
Y. Y. F.
Liu
,
H. A.
Dewi
,
T.
Yin
,
Y.
Lekina
,
Z. X.
Shen
,
N.
Mathews
,
C. K.
Gan
, and
T. C.
Sum
, “
Coherent spin and quasiparticle dynamics in solution-processed layered 2D lead halide perovskites
,”
Adv. Sci.
5
(
10
),
1800664
(
2018
).
52.
S.
Deng
,
E.
Shi
,
L.
Yuan
,
L.
Jin
,
L.
Dou
, and
L.
Huang
, “
Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites
,”
Nat. Commun.
11
(
1
),
664
(
2020
).
53.
A.
Kumar
,
A.
Solanki
,
M.
Manjappa
,
S.
Ramesh
,
Y. K.
Srivastava
,
P.
Agarwal
,
T. C.
Sum
, and
R.
Singh
, “
Excitons in 2D perovskites for ultrafast terahertz photonic devices
,”
Sci. Adv.
6
(
8
),
eaax8821
(
2020
).

Supplementary Material

You do not currently have access to this content.