We show that ionic conduction properties of a multipore nanofluidic memristor can be controlled not only by the amplitude and frequency of an external driving signal but also by chemical gating based on the electrolyte concentration, presence of divalent and trivalent cations, and multi-ionic systems in single and mixed electrolytes. In addition, we describe the modulation of current rectification and hysteresis phenomena, together with neuromorphic conductance responses to voltage pulses, in symmetric and asymmetric external solutions. In our case, memristor conical pores act as nanofluidic diodes modulated by ionic solution characteristics due to the surface charge-regulated ionic transport. The above facts suggest potential sensing and actuating applications based on the conversion between ionic and electronic signals in bioelectrochemical hybrid circuits.

1.
L. O.
Chua
and
K.
Sung Mo
, “
Memristive devices and systems
,”
Proc. IEEE
64
,
209
(
1976
).
2.
Y. V.
Pershin
and
M.
Di Ventra
, “
Memory effects in complex materials and nanoscale systems
,”
Adv. Phys.
60
,
145
(
2011
).
3.
Y.
Zhang
,
Z.
Wang
,
J.
Zhu
,
Y.
Yang
,
M.
Rao
,
W.
Song
,
Y.
Zhuo
,
X.
Zhang
,
M.
Cui
,
L.
Shen
,
R.
Huang
, and
J.
Joshua Yang
, “
Brain-inspired computing with memristors: Challenges in devices, circuits, and systems
,”
Appl. Phys. Rev.
7
,
011308
(
2020
).
4.
T. M.
Kamsma
,
W.
Boon
,
T.
ter Rele
,
C.
Spitoni
, and
R.
van Roij
, “
Iontronic neuromorphic signaling with conical microfluidic memristors
,”
Phys. Rev. Lett.
130
,
268401
(
2023
).
5.
Y.
Hou
,
Y.
Ling
,
Y.
Wang
,
M. Y.
Wang
,
Y.
Chen
,
X.
Li
, and
X.
Hou
, “
Learning from the brain: Bioinspired nanofluidics
,”
J. Phys. Chem. Lett.
14
,
2891
(
2023
).
6.
Q.
Sheng
,
Y.
Xie
,
J.
Li
,
X.
Wang
, and
J.
Xue
, “
Transporting an ionic-liquid/water mixture in a conical nanochannel: A nanofluidic memristor
,”
Chem. Commun.
53
,
6125
(
2017
).
7.
P.
Robin
,
T.
Emmerich
,
A.
Ismail
et al, “
Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels
,”
Science
379
,
161
(
2023
).
8.
A.
Noy
and
S. B.
Darling
, “
Nanofluidic computing makes a splash
,”
Science
379
,
143
(
2023
).
9.
T.
Xiong
,
C.
Li
,
X.
He
,
B.
Xie
,
J.
Zong
,
Y.
Jiang
,
W.
Ma
,
F.
Wu
,
J.
Fei
,
P.
Yu
, and
L.
Mao
, “
Neuromorphic functions with a polyelectrolyte-confined fluidic memristor
,”
Science
379
,
156
(
2023
).
10.
B.
Xie
,
T.
Xiong
,
W.
Li
,
T.
Gao
,
J.
Zong
,
Y.
Liu
, and
P.
Yu
, “
Perspective on nanofluidic memristors: From mechanism to application
,”
Chem. - Asian J.
17
,
e202200682
(
2022
).
11.
J.
Cervera
,
M.
Levin
, and
S.
Mafe
, “
Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling
,”
Phys. Rep.
1004
,
1
(
2023
).
13.
P.
Ramirez
,
V.
Gomez
,
J.
Cervera
,
S.
Mafe
, and
J.
Bisquert
, “
Synaptical tunability of multipore nanofluidic memristors
,”
J. Phys. Chem. Lett.
14
,
10930
(
2023
).
14.
J.
Cervera
,
B.
Schiedt
,
R.
Neumann
,
S.
Mafe
, and
P.
Ramirez
, “
Ionic conduction, rectification, and selectivity in single conical nanopores
,”
J. Chem. Phys.
124
,
104706
(
2006
).
15.
I.
Vlassiouk
and
Z. S.
Siwy
,
Nano Lett.
7
,
552
(
2007
).
16.
P.
Apel
, “
Track etching technique in membrane technology
,”
Radiat. Meas.
34
,
559
(
2001
).
17.
Z.
Siwy
and
A.
Fulinski
, “
Fabrication of a synthetic nanopore ion pump
,”
Phys. Rev. Lett.
89
,
198103
(
2002
).
18.
T.
Ma
,
J.-M.
Janot
, and
S.
Balme
, “
Track-etched nanopore/membrane: From fundamental to applications
,”
Small Methods
4
,
2000366
(
2020
).
19.
P.
Ramirez
,
J. A.
Manzanares
,
J.
Cervera
,
V.
Gomez
,
M.
Ali
,
S.
Nasir
,
W.
Ensinger
, and
S.
Mafe
, “
Surface charge regulation of functionalized conical nanopore conductance by divalent cations and anions
,”
Electrochim. Acta
325
,
134914
(
2019
).
20.
B.
Sun
,
M.
Xiao
,
G.
Zhou
,
Z.
Ren
,
Y. N.
Zhou
, and
Y. A.
Wu
, “
Non-zero-crossing current-voltage hysteresis behavior in memristive system
,”
Mater. Today Adv.
6
,
100056
(
2020
).
21.
P.
Ramirez
,
J.
Cervera
,
S.
Nasir
,
M.
Ali
,
W.
Ensinger
, and
S.
Mafe
, “
Electrochemical impedance spectroscopy of membranes with nanofluidic conical pores
,”
J. Colloid Interface Sci.
655
,
876
(
2024
).
22.
P. A.
Gurnev
and
S. M.
Bezrukov
, “
Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel
,”
Langmuir
28
,
15824
(
2012
).
23.
M.
Queralt-Martín
,
C.
Verdiá-Báguena
,
V. M.
Aguilella
, and
A.
Alcaraz
, “
Electrostatic interactions drive the nonsteric directional block of OmpF channel by La3+
,”
Langmuir
29
,
15320
(
2013
).
24.
P.
Ramirez
,
J. A.
Manzanares
,
J.
Cervera
,
V.
Gomez
,
M.
Ali
,
I.
Pause
,
W.
Ensinger
, and
S.
Mafe
, “
Nanopore charge inversion and current-voltage curves in mixtures of asymmetric electrolytes
,”
J. Membr. Sci.
563
,
633
(
2018
).
25.
P.
Ramirez
,
J.
Cervera
,
J. A.
Manzanares
,
S.
Nasir
,
M.
Ali
,
W.
Ensinger
, and
S.
Mafe
, “
Electrical conductance of conical nanopores: Symmetric and asymmetric salts and their mixtures
,”
J. Chem. Phys.
157
,
144702
(
2022
).
26.
M.
Queralt-Martín
,
J. J.
Pérez-Grau
,
L. M.
Alvero González
,
D. A.
Perini
,
J.
Cervera
,
V. M.
Aguilella
, and
A.
Alcaraz
, “
Biphasic concentration patterns in ionic transport under nanoconfinement revealed in steady-state and time-dependent properties
,”
J. Chem. Phys.
158
,
064701
(
2023
).
27.
P.
Robin
and
L.
Bocquet
, “
Nanofluidics at the crossroads
,”
J. Chem. Phys.
158
,
160901
(
2023
).
28.
D.
Reguera
,
G.
Schmid
,
P. S.
Burada
,
J. M.
Rubi
,
P.
Reimann
, and
P.
Hänggi
, “
Entropic transport: Kinetics, scaling, and control mechanisms
,”
Phys. Rev. Lett.
96
,
130603
(
2006
).
29.
P.
Zhang
,
M.
Xia
,
F.
Zhuge
,
Y.
Zhou
et al, “
Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses
,”
Nano Lett.
19
,
4279
(
2019
).
30.
J. S.
Najem
,
G. J.
Taylor
,
R. J.
Weiss
,
M. S.
Hasan
,
G.
Rose
,
C. D.
Schuman
,
A.
Belianinov
,
C. P.
Collier
, and
S. A.
Sarles
, “
Memristive ion channel-doped biomembranes as synaptic mimics
,”
ACS Nano
12
,
4702
(
2018
).
31.
G.
Perez-Mitta
,
A. G.
Albesa
,
C.
Trautmann
,
M. E.
Toimil-Molares
, and
O.
Azzaroni
, “
Bioinspired integrated nanosystems based on solid-state nanopores: ‘Iontronic’ transduction of biological, chemical and physical stimuli
,”
Chem. Sci.
8
,
890
(
2017
).
32.
M.
Ali
,
P.
Ramirez
,
S.
Nasir
,
J.
Cervera
,
S.
Mafe
, and
W.
Ensinger
, “
Ionic circuitry with nanofluidic diodes
,”
Soft Matter
15
,
9682
(
2019
).
33.
J.
Cervera
,
J. M.
Claver
, and
S.
Mafe
, “
Individual variability and average reliability in parallel networks of heterogeneous biological and artificial nanostructures
,”
IEEE Trans. Nanotechnol.
12
,
1198
(
2013
).
34.
I.
Vourkas
and
G. C.
Sirakoulis
, “
Emerging memristor-based logic circuit design approaches: A review
,”
IEEE Circuits Syst. Mag.
16
,
15
(
2016
).
35.
V.
Gomez
,
P.
Ramirez
,
J.
Cervera
,
M.
Ali
,
S.
Nasir
,
W.
Ensinger
, and
S.
Mafe
, “
Concatenated logic functions using nanofluidic diodes with all-electrical inputs and outputs
,”
Electrochem. Commun.
88
,
52
(
2018
).
36.
B.
Sabbagh
,
N. E.
Fraiman
,
A.
Fish
, and
G.
Yossifon
, “
Designing with iontronic logic gates—From a single polyelectrolyte diode to an integrated ionic circuit
,”
ACS Appl. Mater. Interfaces
15
,
23361
(
2023
).

Supplementary Material

You do not currently have access to this content.