Circular dichroism (CD) of materials, difference in absorbance of left- and right-circularly polarized light, is a standard measure of chirality. Detection of the chirality for individual molecules is a frontier in analytical chemistry and optical science. The usage of a superchiral electromagnetic field near metallic structure is one promising way because it boosts the molecular far-field CD signal. However, it is still elusive as to how such a field actually interacts with the molecules. The cause is that the distribution of the electric field vector is unclear in the vicinity of the metal surface. In particular, it is difficult to directly measure the localized field, e.g., using aperture-type scanning near-field optical microscope. Here, we calculate the three-dimensional (3D) electric field vector, including the longitudinal field, and reveal the whole figure of the near-field CD on a two-dimensional (2D) plane just above the metal surface. Moreover, we propose a method to measure the near-field CD of the whole superchiral field by photo-induced force microscopy (PiFM), where the optical force distribution is mapped in a scanning 2D plane. We numerically demonstrate that, although the presence of the metallic probe tip affects the 3D electric field distribution, the PiFM is sufficiently capable to evaluate the superchiral field. Unveiling the whole figure of near-field is significantly beneficial in obtaining rich information of single molecules with multiple orientations and in analyzing the boosted far-field CD signals.

1.
Y.
Chen
,
W.
Du
,
Q.
Zhang
,
O.
Ávalos-Ovando
,
J.
Wu
,
Q.-H.
Xu
,
N.
Liu
,
H.
Okamoto
,
A. O.
Govorov
,
Q.
Xiong
, and
C. W.
Qiu
, “
Multidimensional nanoscopic chiroptics
,”
Nat. Rev. Phys.
4
,
113
124
(
2021
).
2.
Y.
Tang
and
A. E.
Cohen
, “
Optical chirality and its interaction with matter
,”
Phys. Rev. Lett.
104
,
163901
(
2010
).
3.
Y.
Tang
and
A. E.
Cohen
, “
Enhanced enantioselectivity in excitation of chiral molecules by superchiral light
,”
Science
332
,
333
336
(
2011
).
4.
A.
Papakostas
,
A.
Potts
,
D.
Bagnall
,
S.
Prosvirnin
,
H.
Coles
, and
N.
Zheludev
, “
Optical manifestations of planar chirality
,”
Phys. Rev. Lett.
90
,
107404
(
2003
).
5.
T.
Vallius
,
K.
Jefimovs
,
J.
Turunen
,
P.
Vahimaa
, and
Y.
Svirko
, “
Optical activity in subwavelength-period arrays of chiral metallic particles
,”
Appl. Phys. Lett.
83
,
234
236
(
2003
).
6.
M.
Kuwata-Gonokami
,
N.
Saito
,
Y.
Ino
,
M.
Kauranen
,
K.
Jefimovs
,
T.
Vallius
,
J.
Turunen
, and
Y.
Svirko
, “
Giant optical activity in quasi-two-dimensional planar nanostructures
,”
Phys. Rev. Lett.
95
,
227401
(
2005
).
7.
B.
Bai
,
Y.
Svirko
,
J.
Turunen
, and
T.
Vallius
, “
Optical activity in planar chiral metamaterials: Theoretical study
,”
Phys. Rev. A
76
,
023811
(
2007
).
8.
Y.
Chen
,
H.
Deng
,
X.
Sha
,
W.
Chen
,
R.
Wang
,
Y.-H.
Chen
,
D.
Wu
,
J.
Chu
,
Y. S.
Kivshar
,
S.
Xiao
, and
C. W.
Qiu
, “
Observation of intrinsic chiral bound states in the continuum
,”
Nature
613
,
474
478
(
2023
).
9.
M.
Schäferling
,
D.
Dregely
,
M.
Hentschel
, and
H.
Giessen
, “
Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures
,”
Phys. Rev. X
2
,
031010
(
2012
).
10.
X.
Yin
,
M.
Schäferling
,
B.
Metzger
, and
H.
Giessen
, “
Interpreting chiral nanophotonic spectra: The plasmonic Born–Kuhn model
,”
Nano Lett.
13
,
6238
6243
(
2013
).
11.
X.
Yin
,
M.
Schäferling
,
A. K. U.
Michel
,
A.
Tittl
,
M.
Wuttig
,
T.
Taubner
, and
H.
Giessen
, “
Active chiral plasmonics
,”
Nano Lett.
15
,
4255
4260
(
2015
).
12.
X.
Duan
,
S.
Yue
, and
N.
Liu
, “
Understanding complex chiral plasmonics
,”
Nanoscale
7
,
17237
17243
(
2015
).
13.
S.
Zu
,
Y.
Bao
, and
Z.
Fang
, “
Planar plasmonic chiral nanostructures
,”
Nanoscale
8
,
3900
3905
(
2016
).
14.
M.
Schnell
,
P.
Sarriugarte
,
T.
Neuman
,
A. B.
Khanikaev
,
G.
Shvets
,
J.
Aizpurua
, and
R.
Hillenbrand
, “
Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces
,”
Nano Lett.
16
,
663
670
(
2016
).
15.
C.
Kramer
,
M.
Schäferling
,
T.
Weiss
,
H.
Giessen
, and
T.
Brixner
, “
Analytic optimization of near-field optical chirality enhancement
,”
ACS Photonics
4
,
396
406
(
2017
).
16.
A.
Vázquez-Guardado
and
D.
Chanda
, “
Superchiral light generation on degenerate achiral surfaces
,”
Phys. Rev. Lett.
120
,
137601
(
2018
).
17.
T.
Wu
,
W.
Zhang
,
H.
Zhang
,
S.
Hou
,
G.
Chen
,
R.
Liu
,
C.
Lu
,
J.
Li
,
R.
Wang
,
P.
Duan
,
J.
Li
,
B.
Wang
,
L.
Shi
,
J.
Zi
, and
X.
Zhang
, “
Vector exceptional points with strong superchiral fields
,”
Phys. Rev. Lett.
124
,
083901
(
2020
).
18.
E.
Hendry
,
T.
Carpy
,
J.
Johnston
,
M.
Popland
,
R.
Mikhaylovskiy
,
A.
Lapthorn
,
S.
Kelly
,
L.
Barron
,
N.
Gadegaard
, and
M.
Kadodwala
, “
Ultrasensitive detection and characterization of biomolecules using superchiral fields
,”
Nat. Nanotechnol.
5
,
783
(
2010
).
19.
A.
Kuzyk
,
R.
Schreiber
,
Z.
Fan
,
G.
Pardatscher
,
E.-M.
Roller
,
A.
Högele
,
F. C.
Simmel
,
A. O.
Govorov
, and
T.
Liedl
, “
DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
,”
Nature
483
,
311
(
2012
).
20.
J.
Kumar
,
H.
Eraña
,
E.
López-Martínez
,
N.
Claes
,
V. F.
Martín
,
D. M.
Solís
,
S.
Bals
,
A. L.
Cortajarena
,
J.
Castilla
, and
L. M.
Liz-Marzán
, “
Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
3225
3230
(
2018
).
21.
E.
Mohammadi
,
K. L.
Tsakmakidis
,
A. N.
Askarpour
,
P.
Dehkhoda
,
A.
Tavakoli
, and
H.
Altug
, “
Nanophotonic platforms for enhanced chiral sensing
,”
ACS Photonics
5
,
2669
2675
(
2018
).
22.
C.
Kelly
,
R.
Tullius
,
A. J.
Lapthorn
,
N.
Gadegaard
,
G.
Cooke
,
L. D.
Barron
,
A. S.
Karimullah
,
V. M.
Rotello
, and
M.
Kadodwala
, “
Chiral plasmonic fields probe structural order of biointerfaces
,”
J. Am. Chem. Soc.
140
,
8509
8517
(
2018
).
23.
S.
Adhikari
and
M.
Orrit
, “
Optically probing the chirality of single plasmonic nanostructures and of single molecules: Potential and obstacles
,”
ACS Photonics
9
,
3486
3497
(
2022
).
24.
M.
Sun
,
X.
Wang
,
X.
Guo
,
L.
Xu
,
H.
Kuang
, and
C.
Xu
, “
Chirality at nanoscale for bioscience
,”
Chem. Sci.
13
,
3069
3081
(
2022
).
25.
V. P.
Drachev
,
W. D.
Bragg
,
V. A.
Podolskiy
,
V. P.
Safonov
,
W.-T.
Kim
,
Z. C.
Ying
,
R. L.
Armstrong
, and
V. M.
Shalaev
, “
Large local optical activity in fractal aggregates of nanoparticles
,”
J. Opt. Soc. Am. B
18
,
1896
1903
(
2001
).
26.
T.
Narushima
and
H.
Okamoto
, “
Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures
,”
J. Phys. Chem. C
117
,
23964
23969
(
2013
).
27.
T.
Narushima
,
S.
Hashiyada
, and
H.
Okamoto
, “
Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures
,”
ACS Photonics
1
,
732
738
(
2014
).
28.
S.
Hashiyada
,
T.
Narushima
, and
H.
Okamoto
, “
Local optical activity in achiral two-dimensional gold nanostructures
,”
J. Phys. Chem. C
118
,
22229
22233
(
2014
).
29.
For example
I. D.
Stoev
,
B.
Seelbinder
,
E.
Erben
,
N.
Maghelli
, and
M.
Kreysing
, “
Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap
,”
eLight
1
,
7
(
2021
).
30.
J.
Jahng
,
J.
Brocious
,
D. A.
Fishman
,
S.
Yampolsky
,
D.
Nowak
,
F.
Huang
,
V. A.
Apkarian
,
H. K.
Wickramasinghe
, and
E. O.
Potma
, “
Ultrafast pump-probe force microscopy with nanoscale resolution
,”
Appl. Phys. Lett.
106
,
083113
(
2015
).
31.
T. U.
Tumkur
,
X.
Yang
,
B.
Cerjan
,
N. J.
Halas
,
P.
Nordlander
, and
I.
Thomann
, “
Photoinduced force mapping of plasmonic nanostructures
,”
Nano Lett.
16
,
7942
7949
(
2016
).
32.
T.
Tumkur
,
X.
Yang
,
C.
Zhang
,
J.
Yang
,
Y.
Zhang
,
G. V.
Naik
,
P.
Nordlander
, and
N. J.
Halas
, “
Wavelength-dependent optical force imaging of bimetallic al–au heterodimers
,”
Nano Lett.
18
,
2040
2046
(
2018
).
33.
J.
Yamanishi
,
Y.
Naitoh
,
Y.
Li
, and
Y.
Sugawara
, “
Heterodyne frequency modulation in photoinduced force microscopy
,”
Phys. Rev. Appl.
9
,
024031
(
2018
).
34.
H.
Yamane
,
N.
Yokoshi
,
H.
Oka
,
Y.
Sugawara
, and
H.
Ishihara
, “
Near-field circular dichroism of single molecules
,”
Opt. Express
31
,
3415
3426
(
2023
).
35.
E. M.
Purcell
and
C. R.
Pennypacker
, “
Scattering and absorption of light by nonspherical dielectric grains
,”
Astrophys. J.
186
,
705
714
(
1973
).
36.
P. B.
Johnson
and
R.-W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
(
1972
).
37.
T.
Iida
and
H.
Ishihara
, “
Force control between quantum dots by light in polaritonic molecule states
,”
Phys. Rev. Lett.
97
,
117402
(
2006
).
38.
T.
Iida
and
H.
Ishihara
, “
Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions
,”
Phys. Rev. B
77
,
245319
(
2008
).
39.
J. P.
Gordon
, “
Radiation forces and momenta in dielectric media
,”
Phys. Rev. A
8
,
14
21
(
1973
).
40.
M.
Ternes
,
C. P.
Lutz
,
C. F.
Hirjibehedin
,
F. J.
Giessibl
, and
A. J.
Heinrich
, “
The force needed to move an atom on a surface
,”
Science
319
,
1066
1069
(
2008
).
41.
J.
Yamanishi
,
H.
Yamane
,
Y.
Naitoh
,
Y. J.
Li
,
N.
Yokoshi
,
T.
Kameyama
,
S.
Koyama
,
T.
Torimoto
,
H.
Ishihara
, and
Y.
Sugawara
, “
Optical force mapping at the single-nanometre scale
,”
Nat. Commun.
12
,
3865
(
2021
).
42.
F.
Benz
,
M. K.
Schmidt
,
A.
Dreismann
,
R.
Chikkaraddy
,
Y.
Zhang
,
A.
Demetriadou
,
C.
Carnegie
,
H.
Ohadi
,
B.
De Nijs
,
R.
Esteban
et al, “
Single-molecule optomechanics in “picocavities”
,”
Science
354
,
726
729
(
2016
).
43.
J.
Yamanishi
,
H.-Y.
Ahn
, and
H.
Okamoto
, “
Nanoscopic observation of chiro-optical force
,”
Nano Lett.
23
,
9347
9352
(
2023
).
You do not currently have access to this content.