The energy of a many-particle system is not convex with respect to particle number for r−k interparticle repulsion potentials if k > log34 ≈ 1.262. With such potentials, some finite electronic systems have ionization potentials that are less than the electron affinity: they have negative band gap (chemical hardness). Although the energy may be a convex function of the number of electrons (for which k = 1), it suggests that finding an analytic proof of convexity will be very difficult. The bound on k is postulated to be tight. An apparent signature of non-convex behavior is that the Dyson orbital corresponding to the lowest-energy mode of electron attachment has a vanishingly small amplitude.

1.
J. M.
Saveant
,
Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry
(
Wiley
,
Hoboken
,
2006
).
2.
D. H.
Evans
and
K.
Hu
,
J. Chem. Soc., Faraday Trans.
92
(
20
),
3983
3990
(
1996
).
3.
D. H.
Evans
et al,
Acta Chem. Scand.
52
(
2
),
194
197
(
1998
).
4.
M. W.
Lehmann
and
D. H.
Evans
,
Anal. Chem.
71
(
10
),
1947
1950
(
1999
).
5.
D. H.
Evans
,
M. W.
Lehmann
et al,
Acta Chem. Scand.
53
(
10
),
765
774
(
1999
).
6.
D. H.
Evans
,
Chem. Rev.
108
(
7
),
2113
2144
(
2008
).
7.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
277
(
1983
).
8.
P.
Phillips
and
E. R.
Davidson
,
Int. J. Quantum Chem.
23
,
185
194
(
1983
).
9.
R. M.
Fye
,
M. J.
Martins
, and
R. T.
Scalettar
,
Phys. Rev. B
42
(
10
),
6809
6812
(
1990
).
10.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
11.
E. P.
Gyftopoulos
and
G. N.
Hatsopoulos
,
Proc. Natl. Acad. Sci. U. S. A.
60
,
786
793
(
1968
).
12.
Y. K.
Zhang
and
W. T.
Yang
,
Theor. Chem. Acc.
103
,
346
348
(
2000
).
13.
P. W.
Ayers
and
M.
Levy
,
Acta Phys.-Chim. Sin.
34
(
6
),
625
630
(
2018
).
14.
E.
Sagvolden
,
J. P.
Perdew
, and
M.
Levy
,
Phys. Rev. A
79
,
026501
(
2009
).
15.
W. T.
Yang
,
Y. K.
Zhang
, and
P. W.
Ayers
,
Phys. Rev. Lett.
84
,
5172
5175
(
2000
).
16.
P. W.
Ayers
,
J. Math. Chem.
43
(
1
),
285
303
(
2008
).
17.
A.
Gonis
,
X. G.
Zhang
,
D. M.
Nicholson
, and
G. M.
Stocks
,
J. Phys. Chem. Solids
75
(
5
),
680
687
(
2014
).
18.
A.
Gonis
,
X. G.
Zhang
,
D. M.
Nicholson
, and
G. M.
Stocks
,
Phys. Rev. B
84
(
4
),
045121
(
2011
).
19.
A. C.
Burgess
,
E.
Linscott
, and
D. D.
O’Regan
,
J. Chem. Phys.
159
(
21
),
211102
(
2023
).
20.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford UP
,
New York
,
1989
).
21.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer-Verlag
,
Berlin
,
1990
).
22.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
12980
(
1996
).
23.
A. M.
Teale
,
T.
Helgaker
,
A.
Savin
,
C.
Adamo
,
B.
Aradi
,
A. V.
Arbuznikov
,
P.
Ayers
,
E. J.
Baerends
,
V.
Barone
,
P.
Calaminici
,
E.
Cancès
et al,
Phys. Chem. Chem. Phys.
24
,
28700
(
2022
).
24.
R. G.
Parr
,
R. A.
Donnelly
,
M.
Levy
, and
W. E.
Palke
,
J. Chem. Phys.
68
,
3801
3807
(
1978
).
25.
R. G.
Parr
and
R. G.
Pearson
,
J. Am. Chem. Soc.
105
,
7512
7516
(
1983
).
26.
R. G.
Pearson
,
J. Chem. Educ.
76
,
267
275
(
1999
).
27.
R. G.
Parr
and
P. K.
Chattaraj
,
J. Am. Chem. Soc.
113
,
1854
1855
(
1991
).
28.
R. G.
Pearson
,
J. Chem. Educ.
64
,
561
567
(
1987
).
29.
P. W.
Ayers
and
R. G.
Parr
,
J. Am. Chem. Soc.
122
,
2010
2018
(
2000
).
30.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
,
Chem. Rev.
103
,
1793
1873
(
2003
).
32.
J. L.
Gázquez
,
J. Mex. Chem. Soc.
52
,
3
10
(
2008
).
33.
P. W.
Ayers
,
Faraday Discuss.
135
,
161
190
(
2007
).
34.
P. A.
Johnson
,
L. J.
Bartolotti
,
P. W.
Ayers
,
T.
Fievez
, and
P.
Geerlings
, in
Modern Charge Density Analysis
, edited by
C.
Gatti
and
P.
Macchi
(
Springer
,
New York
,
2012
), pp.
715
764
.
35.
P.
Geerlings
,
E.
Chamorro
,
P. K.
Chattaraj
,
F.
De Proft
,
J. L.
Gázquez
,
S.
Liu
,
C.
Morell
,
A.
Toro-Labbé
,
A.
Vela
, and
P.
Ayers
,
Theor. Chem. Acc.
139
(
2
),
36
(
2020
).
36.
A.
Gonis
,
X. G.
Zhang
,
D. M.
Nicholson
, and
G. M.
Stocks
,
Mol. Phys.
112
(
3–4
),
453
461
(
2014
).
37.
P. W.
Ayers
and
R. G.
Parr
,
J. Chem. Phys.
128
,
184108
(
2008
).
38.
M.
Seidl
,
P.
Gori-Giorgi
, and
A.
Savin
,
Phys. Rev. A
75
,
042511
(
2007
).
39.
M.
Seidl
,
Int. J. Quantum Chem.
91
,
145
150
(
2003
).
40.
M.
Seidl
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. A
62
,
012502
(
2000
).
41.
M.
Seidl
,
J. P.
Perdew
, and
M.
Levy
,
Phys. Rev. A
59
,
51
54
(
1999
).
42.
S.
Ivanov
and
M.
Levy
,
Adv. Quantum Chem.
33
,
11
29
(
1998
).
43.
A.
Seidl
,
A.
Gorling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
3774
(
1996
).
44.
S.
Vuckovic
,
A.
Gerolin
,
T. J.
Daas
,
H.
Bahmann
,
G.
Friesecke
, and
P.
Gori-Giorgi
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
13
(
2
),
e1634
(
2023
).
45.

The restriction to spinless fermions (e.g., electrons with the same spin) is probably not necessary because the large and divergent interparticle repulsion should prevent multiple particles from occupying the central site as the classical limit is approached. However, the author has not proved this. If it were not true, building a Hamiltonian for non-spin-free fermions would require a non-Coulomb on-site potential. (Specifically, an on-site potential that is more tightly localized to the site.)

46.
P. W.
Ayers
,
S.
Golden
, and
M.
Levy
,
J. Chem. Phys.
124
,
054101
(
2006
).
47.
P. W.
Ayers
and
W. T.
Yang
,
J. Chem. Phys.
124
,
224108
(
2006
).
48.
P. W.
Ayers
and
P.
Fuentealba
,
Phys. Rev. A
80
,
032510
(
2009
).
49.
S. M.
Valone
,
J. Chem. Phys.
73
,
1344
1349
(
1980
).
50.
S. M.
Valone
,
J. Chem. Phys.
73
,
4653
4655
(
1980
).
51.
P. W.
Ayers
,
Phys. Rev. A
73
(
1
),
012513
(
2006
).
52.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
5079
(
1981
).
53.
C. R.
Jacob
and
M.
Reiher
,
Int. J. Quantum Chem.
112
(
23
),
3661
3684
(
2012
).
54.
T.
Gal
and
P.
Geerlings
,
Phys. Rev. A
81
,
032512
(
2010
).
55.
T.
Gal
and
P.
Geerlings
,
J. Chem. Phys.
133
,
144105
(
2010
).
56.
T.
Gal
,
P. W.
Ayers
,
F.
De Proft
, and
P.
Geerlings
,
J. Chem. Phys.
131
,
154114
(
2009
).
57.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W. T.
Yang
,
Chem. Rev.
112
,
289
320
(
2012
).
58.
X. D.
Yang
,
A. H. G.
Patel
,
R. A.
Miranda-Quintana
,
F.
Heidar-Zadeh
,
C. E.
Gonzalez-Espinoza
, and
P. W.
Ayers
,
J. Chem. Phys.
145
(
3
),
000004
(
2016
).
59.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W. T.
Yang
,
Science
321
,
792
794
(
2008
).
60.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W. T.
Yang
,
J. Chem. Phys.
129
,
121104
(
2008
).

Supplementary Material

You do not currently have access to this content.