In this work, we introduce a flow based machine learning approach called reaction coordinate (RC) flow for the discovery of low-dimensional kinetic models of molecular systems. The RC flow utilizes a normalizing flow to design the coordinate transformation and a Brownian dynamics model to approximate the kinetics of RC, where all model parameters can be estimated in a data-driven manner. In contrast to existing model reduction methods for molecular kinetics, RC flow offers a trainable and tractable model of reduced kinetics in continuous time and space due to the invertibility of the normalizing flow. Furthermore, the Brownian dynamics-based reduced kinetic model investigated in this work yields a readily discernible representation of metastable states within the phase space of the molecular system. Numerical experiments demonstrate how effectively the proposed method discovers interpretable and accurate low-dimensional representations of given full-state kinetics from simulations.

1.
F.
Noé
and
F.
Nuske
,
Multiscale Model. Simul.
11
,
635
(
2013
).
2.
F.
Nuske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S.
Mey
, and
F.
Noé
,
J. Chem. Theory Comput.
10
,
1739
(
2014
).
3.
S.
Klus
,
P.
Koltai
, and
C.
Schütte
,
J. Comput. Dyn.
3
,
51
(
2016
).
4.
S.
Klus
,
F.
Nüske
,
P.
Koltai
,
H.
Wu
,
I.
Kevrekidis
,
C.
Schütte
, and
F.
Noé
,
J. Nonlinear Sci.
28
,
985
(
2018
).
5.
K. A.
Konovalov
,
I. C.
Unarta
,
S.
Cao
,
E. C.
Goonetilleke
, and
X.
Huang
,
JACS Au
1
,
1330
(
2021
).
6.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
7.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
2000
(
2013
).
9.
H.
Wu
and
F.
Noé
,
J. Nonlinear Sci.
30
,
23
(
2020
).
10.
L.
Boninsegna
,
G.
Gobbo
,
F.
Noé
, and
C.
Clementi
,
J. Chem. Theory Comput.
11
,
5947
(
2015
).
11.
M. O.
Williams
,
I. G.
Kevrekidis
, and
C. W.
Rowley
,
J. Nonlinear Sci.
25
,
1307
(
2015
).
12.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
11
,
600
(
2015
).
13.
F.
Nüske
,
R.
Schneider
,
F.
Vitalini
, and
F.
Noé
,
J. Chem. Phys.
144
,
054105
(
2016
).
14.
H.
Wu
,
F.
Nüske
,
F.
Paul
,
S.
Klus
,
P.
Koltai
, and
F.
Noé
,
J. Chem. Phys.
146
,
154104
(
2017
).
15.
M. K.
Scherer
,
B. E.
Husic
,
M.
Hoffmann
,
F.
Paul
,
H.
Wu
, and
F.
Noé
,
J. Chem. Phys.
150
,
194108
(
2019
).
16.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
1
(
2018
).
17.
H.
Sidky
,
W.
Chen
, and
A. L.
Ferguson
,
J. Phys. Chem. B
123
,
7999
(
2019
).
18.
L.
Bonati
,
G.
Piccini
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2113533118
(
2021
).
19.
M.
Ghorbani
,
S.
Prasad
,
J. B.
Klauda
, and
B. R.
Brooks
,
J. Chem. Phys.
156
,
184103
(
2022
).
20.
C.
Wehmeyer
and
F.
Noé
,
J. Chem. Phys.
148
,
241703
(
2018
).
21.
A.
Bittracher
,
P.
Koltai
,
S.
Klus
,
R.
Banisch
,
M.
Dellnitz
, and
C.
Schütte
,
J. Nonlinear Sci.
28
,
471
(
2018
).
22.
A.
Bittracher
,
S.
Klus
,
B.
Hamzi
,
P.
Koltai
, and
C.
Schütte
,
J. Nonlinear Sci.
31
,
1
(
2021
).
23.
Y.
Wang
,
J. M. L.
Ribeiro
, and
P.
Tiwary
,
Nat. Commun.
10
,
1
(
2019
).
24.
D.
Wang
,
Y.
Wang
,
L.
Evans
, and
P.
Tiwary
, arXiv:2209.00905 (
2022
).
25.
Z. D.
Pozun
,
K.
Hansen
,
D.
Sheppard
,
M.
Rupp
,
K.-R.
Müller
, and
G.
Henkelman
,
J. Chem. Phys.
136
,
174101
(
2012
).
26.
J.
Lu
and
E.
Vanden-Eijnden
,
J. Chem. Phys.
141
,
044109
(
2014
).
27.
F.
Legoll
and
T.
Lelievre
,
Nonlinearity
23
,
2131
(
2010
).
28.
W.
Zhang
,
C.
Hartmann
, and
C.
Schütte
,
Faraday Discuss.
195
,
365
(
2016
).
29.
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
,
Nat. Commun.
9
,
1
(
2018
).
30.
K.
Champion
,
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
22445
(
2019
).
31.
I.
Kobyzev
,
S. J.
Prince
, and
M. A.
Brubaker
,
IEEE Trans. Pattern Anal. Mach. Intell.
43
,
3964
(
2021
).
32.
F.
Noé
,
S.
Olsson
,
J.
Köhler
, and
H.
Wu
,
Science
365
,
eaaw1147
(
2019
).
33.
H.
Wu
,
J.
Köhler
, and
F.
Noé
,
Adv. Neural Inf. Process. Syst.
33
,
5933
(
2020
).
34.
J.
Köhler
,
L.
Klein
, and
F.
Noé
,
International Conference on Machine Learning
(
PMLR
,
2020
), pp.
5361
5370
.
35.
J.
Köhler
,
A.
Krämer
, and
F.
Noé
,
Adv. Neural Inf. Process. Syst.
34
,
2796
(
2021
).
36.
M.
Invernizzi
,
A.
Krämer
,
C.
Clementi
, and
F.
Noé
,
J. Phys. Chem. Lett.
13
,
11643
(
2022
).
37.
M.
Dibak
,
L.
Klein
,
A.
Krämer
, and
F.
Noé
,
Phys. Rev. Res.
4
,
L042005
(
2022
).
38.
J.
Köhler
,
M.
Invernizzi
,
P.
De Haan
, and
F.
Noé
,
Proceedings of the 40th International Conference on Machine Learning,
Proceedings of Machine Learning Research Vol. 202 (PMLR, 2023), pp.
17301
17326
.
39.
S.-H.
Li
and
L.
Wang
,
Phys. Rev. Lett.
121
,
260601
(
2018
).
40.
G.
Kanwar
,
M. S.
Albergo
,
D.
Boyda
,
K.
Cranmer
,
D. C.
Hackett
,
S.
Racaniere
,
D. J.
Rezende
, and
P. E.
Shanahan
,
Phys. Rev. Lett.
125
,
121601
(
2020
).
41.
L.
Klein
,
A. Y. K.
Foong
,
T. E.
Fjelde
,
B.
Mlodozeniec
,
M.
Brockschmidt
,
S.
Nowozin
,
F.
Noé
, and
R.
Tomioka
, in Proceedings of the 37th Conference on Neural Information Processing Systems, arXiv:2302.01170 (
2023
).
42.
G.
Papamakarios
,
E. T.
Nalisnick
,
D. J.
Rezende
,
S.
Mohamed
, and
B.
Lakshminarayanan
,
J. Mach. Learn. Res.
22
,
1
(
2021
).
43.
L.
Dinh
,
D.
Krueger
, and
Y.
Bengio
, in 3rd International Conference on Learning Representations, {ICLR} 2015, San Diego, CA, 7-9 May 2015; arXiv:1410.8516 (
2014
).
44.
D.
Rezende
and
S.
Mohamed
,
International Conference on Machine Learning
(
PMLR
,
2015
), pp.
1530
1538
.
45.
L.
Dinh
,
J.
Sohl-Dickstein
, and
S.
Bengio
,
5th International Conference on Learning Representations, {ICLR} 2017, Toulon, France, 24-26 April 2017
(OpenReview.net, 2017).
46.
W.
Grathwohl
,
R. T.
Chen
,
J.
Bettencourt
,
I.
Sutskever
, and
D.
Duvenaud
,
International Conference on Learning Representations
(
2018
).
47.
K.
Tang
,
X.
Wan
, and
Q.
Liao
,
Theor. Appl. Mech. Lett.
10
,
143
(
2020
).
48.
W. E, W.
Ren
and
E.
Vanden-Eijnden
, arXiv:cond-mat/0205528 (
2002
).
49.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
(
2004
).
50.
D. H.
Anderson
,
Compartmental Modeling and Tracer Kinetics
(
Springer Science & Business Media
,
2013
), Vol.
50
.
51.
H.
Risken
,
The Fokker-Planck Equation
(
Springer
,
1996
).
52.
B.
Jensen
and
R.
Poulsen
,
J. Deriv.
9
,
18
(
2002
).
53.
G. B.
Durham
and
A. R.
Gallant
,
J. Bus. Econ. Stat.
20
,
297
(
2002
).
54.
D. P.
Kingma
and
J.
Ba
, in 3rd International Conference on Learning Representations, {ICLR} 2015, San Diego, CA, 7-9 May 2015; arXiv:1412.6980 (
2014
).
55.
P.
Kidger
,
J.
Foster
,
X. C.
Li
, and
T.
Lyons
,
Adv. Neural Inf. Process. Syst.
34
,
18747
(
2021
).
56.
B.
Liu
,
M.
Xue
,
Y.
Qiu
,
K. A.
Konovalov
,
M. S.
O’Connor
, and
X.
Huang
,
J. Chem. Phys.
159
,
094901
(
2023
).
58.
D.
Wang
and
P.
Tiwary
,
J. Chem. Phys.
154
,
134111
(
2021
).
59.
M.
Federici
,
P.
Forré
,
R.
Tomioka
, and
B. S.
Veeling
, arXiv:2309.07200 (
2023
).
60.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
61.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
63.
S.
Cao
,
Y.
Qiu
,
M. L.
Kalin
, and
X.
Huang
,
J. Chem. Phys.
159
,
134106
(
2023
).
64.
A. J.
Dominic
III
,
T.
Sayer
,
S.
Cao
,
T. E.
Markland
,
X.
Huang
, and
A.
Montoya-Castillo
,
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2221048120
(
2023
).
65.
I. C.
Unarta
,
S.
Cao
, and
X.
Huang
,
Biophys. J.
122
,
445a
(
2023
).
66.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
67.
See https://github.com/noegroup/bgflow for the RealNVP code.
68.
M.
Hoffmann
,
M.
Scherer
,
T.
Hempel
,
A.
Mardt
,
B.
de Silva
,
B. E.
Husic
,
S.
Klus
,
H.
Wu
,
N.
Kutz
,
S. L.
Brunton
, and
F.
Noé
,
Mach. Learn.: Sci. Technol.
3
,
015009
(
2021
).
69.
See https://markovmodel.github.io/mdshare/ for MD simulation data for the pentapeptide.
70.
J.
Kim
,
D.
Bloore
,
K.
Kapoor
,
J.
Feng
,
M.-H.
Hao
, and
M.
Wang
, “
Scalable normalizing flows enable Boltzmann generators for macromolecules
,” Poster presented at Workshop:
New Frontiers of AI for Drug Discovery and Development
(
NeurIPS
,
2023
).
You do not currently have access to this content.