Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light–matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori–Nakajima–Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method’s capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1999
).
2.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
3.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
4.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
1418
(
2008
).
5.
G. S.
Schlau-Cohen
,
A.
Ishizaki
, and
G. R.
Fleming
, “
Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting
,”
Chem. Phys.
386
,
1
22
(
2011
).
6.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
,
327
352
(
2018
).
7.
S.
Biswas
,
J.
Kim
,
X.
Zhang
, and
G. D.
Scholes
, “
Coherent two-dimensional and broadband electronic spectroscopies
,”
Chem. Rev.
122
,
4257
4321
(
2022
).
8.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mančal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
,”
Nature
446
,
782
786
(
2007
).
9.
B.
Cho
,
W. K.
Peters
,
R. J.
Hill
,
T. L.
Courtney
, and
D. M.
Jonas
, “
Bulklike hot carrier dynamics in lead sulfide quantum dots
,”
Nano Lett.
10
,
2498
2505
(
2010
).
10.
K. L. M.
Lewis
and
J. P.
Ogilvie
, “
Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
3
,
503
510
(
2012
).
11.
S.
Rafiq
,
J. C.
Dean
, and
G. D.
Scholes
, “
Observing vibrational wavepackets during an ultrafast electron transfer reaction
,”
J. Phys. Chem. A
119
,
11837
11846
(
2015
).
12.
J.
Ryu
,
S. D.
Park
,
D.
Baranov
,
I.
Rreza
,
J. S.
Owen
, and
D. M.
Jonas
, “
Relations between absorption, emission, and excited state chemical potentials from nanocrystal 2D spectra
,”
Sci. Adv.
7
,
eabf4741
(
2021
).
13.
M.
Son
,
R.
Moya
,
A.
Pinnola
,
R.
Bassi
, and
G. S.
Schlau-Cohen
, “
Protein-protein interactions induce pH-dependent and zeaxanthin-independent photoprotection in the plant light-harvesting complex, LHCII
,”
J. Am. Chem. Soc.
143
,
17577
17586
(
2021
).
14.
M.
Son
,
S. M.
Hart
, and
G. S.
Schlau-Cohen
, “
Investigating carotenoid photophysics in photosynthesis with 2D electronic spectroscopy
,”
Trends Chem.
3
,
733
746
(
2021
).
15.
V. R.
Policht
,
A.
Niedringhaus
,
R.
Willow
,
P. D.
Laible
,
D. F.
Bocian
,
C.
Kirmaier
,
D.
Holten
,
T.
Mančal
, and
J. P.
Ogilvie
, “
Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center
,”
Sci. Adv.
8
,
eabk0953
(
2022
).
16.
H. H.
Nguyen
,
Y.
Song
,
E. L.
Maret
,
Y.
Silori
,
R.
Willow
,
C. F.
Yocum
, and
J. P.
Ogilvie
, “
Charge separation in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy
,”
Sci. Adv.
9
,
eade7190
(
2023
).
17.
P. J.
Brosseau
,
J. J.
Geuchies
,
D.
Jasrasaria
,
A. J.
Houtepen
,
E.
Rabani
, and
P.
Kambhampati
, “
Ultrafast hole relaxation dynamics in quantum dots revealed by two-dimensional electronic spectroscopy
,”
Commun. Phys.
6
,
48
(
2023
).
18.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
, “
Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers
,”
J. Chem. Phys.
132
,
024505
(
2010
).
19.
X. T.
Liang
, “
Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral
,”
J. Chem. Phys.
141
,
044116
(
2014
).
20.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
, “
Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes using the nonperturbative reduced dynamics method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1498
(
2021
).
21.
T. L. C.
Jansen
, “
Computational spectroscopy of complex systems
,”
J. Chem. Phys.
155
,
170901
(
2021
).
22.
L.
Chen
,
D. I.
Bennett
, and
A.
Eisfeld
, “
Calculating nonlinear response functions for multidimensional electronic spectroscopy using dyadic non-Markovian quantum state diffusion
,”
J. Chem. Phys.
157
,
114104
(
2022
).
23.
F.
Segatta
,
D. A.
Ruiz
,
F.
Aleotti
,
M.
Yaghoubi
,
S.
Mukamel
,
M.
Garavelli
,
F.
Santoro
, and
A.
Nenov
, “
Nonlinear molecular electronic spectroscopy via MCTDH quantum dynamics: From exact to approximate expressions
,”
J. Chem. Theory Comput.
19
,
2075
2091
(
2023
).
24.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling
,”
J. Chem. Phys.
119
,
12063
12076
(
2003
).
25.
Q.
Shi
and
E.
Geva
, “
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
,”
J. Chem. Phys.
120
,
10647
10658
(
2004
).
26.
M. L.
Zhang
,
B. J.
Ka
, and
E.
Geva
, “
Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation
,”
J. Chem. Phys.
125
,
044106
(
2006
).
27.
G.
Cohen
and
E.
Rabani
, “
Memory effects in nonequilibrium quantum impurity models
,”
Phys. Rev. B
84
,
075150
(
2011
).
28.
A.
Montoya-Castillo
and
D. R.
Reichman
, “
Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics
,”
J. Chem. Phys.
144
,
184104
(
2016
).
29.
A.
Kelly
,
A.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
, “
Generalized quantum master equations in and out of equilibrium: When can one win?
,”
J. Chem. Phys.
144
,
184105
(
2016
).
30.
L.
Kidon
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
, “
On the memory kernel and the reduced system propagator
,”
J. Chem. Phys.
149
,
104105
(
2018
).
31.
E.
Mulvihill
and
E.
Geva
, “
A road map to various pathways for calculating the memory kernel of the generalized quantum master equation
,”
J. Phys. Chem. B
125
,
9834
9852
(
2021
).
32.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
33.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
34.
H.
Mori
, “
Transport, collective motion, and Brownian motion
,”
Prog. Theor. Phys.
33
,
423
455
(
1965
).
35.
B. J.
Ka
,
M. L.
Zhang
, and
E.
Geva
, “
Homogeneity and Markovity of electronic dephasing in liquid solutions
,”
J. Chem. Phys.
125
,
124509
(
2006
).
36.
A.
Kelly
and
T. E.
Markland
, “
Efficient and accurate surface hopping for long time nonadiabatic quantum dynamics
,”
J. Chem. Phys.
139
,
014104
(
2013
).
37.
A.
Kelly
,
N.
Brackbill
, and
T. E.
Markland
, “
Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations
,”
J. Chem. Phys.
142
,
094110
(
2015
).
38.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
, “
A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation
,”
J. Chem. Phys.
150
,
034101
(
2019
).
39.
E.
Mulvihill
,
X.
Gao
,
Y.
Liu
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
074103
(
2019
).
40.
G.
Amati
,
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Quasiclassical approaches to the generalized quantum master equation
,”
J. Chem. Phys.
157
,
234103
(
2022
).
41.
A.
Ivanov
and
H. P.
Breuer
, “
Extension of the Nakajima-Zwanzig approach to multitime correlation functions of open systems
,”
Phys. Rev. A
92
,
032113
(
2015
).
42.
L.
Chen
,
R.
Zheng
,
Y.
Jing
, and
Q.
Shi
, “
Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method
,”
J. Chem. Phys.
134
,
194508
(
2011
).
43.
B.
Hein
,
C.
Kreisbeck
,
T.
Kramer
, and
M.
Rodríguez
, “
Modelling of oscillations in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex
,”
New J. Phys.
14
,
023018
(
2012
).
44.
T.
Ikeda
and
Y.
Tanimura
, “
Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach
,”
J. Chem. Phys.
147
,
014102
(
2017
).
45.
X.
Leng
,
Y. M.
Yan
,
R. D.
Zhu
,
K.
Song
,
Y. X.
Weng
, and
Q.
Shi
, “
Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex II at ambient temperature
,”
J. Phys. Chem. B
122
,
4642
4652
(
2018
).
46.
T.
Sayer
and
A.
Montoya-Castillo
, “
Compact and complete description of non-Markovian dynamics
,”
J. Chem. Phys.
158
,
014105
(
2023
).
47.
J.
Cerrillo
and
J.
Cao
, “
Non-Markovian dynamical maps: Numerical processing of open quantum trajectories
,”
Phys. Rev. Lett.
112
,
110401
(
2014
).
48.
M. R.
Jørgensen
and
F. A.
Pollock
, “
Discrete memory kernel for multitime correlations in non-Markovian quantum processes
,”
Phys. Rev. A
102
,
052206
(
2020
).
49.
S.
Gherardini
,
A.
Smirne
,
S. F.
Huelga
, and
F.
Caruso
, “
Transfer-tensor description of memory effects in open-system dynamics and multi-time statistics
,”
Quantum Sci. Technol.
7
,
025005
(
2022
).
50.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier Science
,
1990
), p.
556
.
51.
J.-P.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
(
Dover Publications
,
1991
), p.
417
.
52.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
(
1964
).
53.
W.
Kob
,
C.
Donati
,
S. J.
Plimpton
,
P. H.
Poole
, and
S. C.
Glotzer
, “
Dynamical heterogeneities in a supercooled Lennard-Jones liquid
,”
Phys. Rev. Lett.
79
,
2827
(
1997
).
54.
R.
van Zon
and
J.
Schofield
, “
Mode-coupling theory for multiple-point and multiple-time correlation functions
,”
Phys. Rev. E
65
,
011106
(
2001
).
55.
G.
Szamel
, “
Colloidal glass transition: Beyond mode-coupling theory
,”
Phys. Rev. Lett.
90
,
228301
(
2003
).
56.
J.
Wu
and
J.
Cao
, “
Gaussian factorization of hydrodynamic correlation functions and mode-coupling memory kernels
,”
Phys. Rev. E
67
,
061116
(
2003
).
57.
P.
Mayer
,
K.
Miyazaki
, and
D. R.
Reichman
, “
Cooperativity beyond caging: Generalized mode-coupling theory
,”
Phys. Rev. Lett.
97
,
095702
(
2006
).
58.
K.
Kim
and
S.
Saito
, “
Multi-time density correlation functions in glass-forming liquids: Probing dynamical heterogeneity and its lifetime
,”
J. Chem. Phys.
133
,
044511
(
2010
).
59.
L. M.
Janssen
and
D. R.
Reichman
, “
Microscopic dynamics of supercooled liquids from first principles
,”
Phys. Rev. Lett.
115
,
205701
(
2015
).
60.
D. V.
Matyushov
and
G. A.
Voth
, “
Modeling the free energy surfaces of electron transfer in condensed phases
,”
J. Chem. Phys.
113
,
5413
5424
(
2000
).
61.
J.
Colmenero
,
F.
Alvarez
, and
A.
Arbe
, “
Self-motion and the α relaxation in a simulated glass-forming polymer: Crossover from Gaussian to non-Gaussian dynamic behavior
,”
Phys. Rev. E
65
,
041804
(
2002
).
62.
D. W.
Small
,
D. V.
Matyushov
, and
G. A.
Voth
, “
The theory of electron transfer reactions: What may be missing?
,”
J. Am. Chem. Soc.
125
,
7470
7478
(
2003
).
63.
K.
Kwac
,
H.
Lee
, and
M.
Cho
, “
Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: Linear and nonlinear vibrational spectra
,”
J. Chem. Phys.
120
,
1477
1490
(
2004
).
64.
J. R.
Schmidt
,
S. A.
Corcelli
, and
J. L.
Skinner
, “
Pronounced non-Condon effects in the ultrafast infrared spectroscopy of water
,”
J. Chem. Phys.
123
,
044513
(
2005
).
65.
M. F.
DeCamp
,
L.
DeFlores
,
J. M.
McCracken
,
A.
Tokmakoff
,
K.
Kwac
, and
M.
Cho
, “
Amide I vibrational dynamics of N-methylacetamide in polar solvents: The role of electrostatic interactions
,”
J. Phys. Chem. B
109
,
11016
11026
(
2005
).
66.
E.
Flenner
and
G.
Szamel
, “
Relaxation in a glassy binary mixture: Mode-coupling-like power laws, dynamic heterogeneity, and a new non-Gaussian parameter
,”
Phys. Rev. E
72
,
011205
(
2005
).
67.
J.
Bredenbeck
,
J.
Helbing
, and
P.
Hamm
, “
Solvation beyond the linear response regime
,”
Phys. Rev. Lett.
95
,
083201
(
2005
).
68.
P.
Hamm
, “
Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function
,”
J. Chem. Phys.
124
,
124506
(
2006
).
69.
D. V.
Matyushov
, “
Energetics of electron-transfer reactions in soft condensed media
,”
Acc. Chem. Res.
40
,
294
301
(
2007
).
70.
L. M.
Norris
,
G. A.
Paz-Silva
, and
L.
Viola
, “
Qubit noise spectroscopy for non-Gaussian dephasing environments
,”
Phys. Rev. Lett.
116
,
150503
(
2016
).
71.
T. J.
Zuehlsdorff
,
A.
Montoya-Castillo
,
J. A.
Napoli
,
T. E.
Markland
, and
C. M.
Isborn
, “
Optical spectra in the condensed phase: Capturing anharmonic and vibronic features using dynamic and static approaches
,”
J. Chem. Phys.
151
,
074111
(
2019
).
72.
A.
Evrard
,
V.
Makhalov
,
T.
Chalopin
,
L. A.
Sidorenkov
,
J.
Dalibard
,
R.
Lopes
, and
S.
Nascimbene
, “
Enhanced magnetic sensitivity with non-Gaussian quantum fluctuations
,”
Phys. Rev. Lett.
122
,
173601
(
2019
).
73.
J. M.
Miotto
,
S.
Pigolotti
,
A. V.
Chechkin
, and
S.
Roldán-Vargas
, “
Length scales in Brownian yet non-Gaussian dynamics
,”
Phys. Rev. X
11
,
031002
(
2021
).
74.
F.
Rusciano
,
R.
Pastore
, and
F.
Greco
, “
Fickian non-Gaussian diffusion in glass-forming liquids
,”
Phys. Rev. Lett.
128
,
168001
(
2022
).
75.
F. A.
Pollock
and
K.
Modi
, “
Tomographically reconstructed master equations for any open quantum dynamics
,”
Quantum
2
,
76
(
2018
).
76.
M.
Berkowitz
,
J. D.
Morgan
,
D. J.
Kouri
, and
J. A.
McCammon
, “
Memory kernels from molecular dynamics
,”
J. Chem. Phys.
75
,
2462
2463
(
1981
).
77.
B.
Kowalik
,
J. O.
Daldrop
,
J.
Kappler
,
J. C.
Schulz
,
A.
Schlaich
, and
R. R.
Netz
, “
Memory-kernel extraction for different molecular solutes in solvents of varying viscosity in confinement
,”
Phys. Rev. E
100
,
012126
(
2019
).
78.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
79.
A.
Ishizaki
and
Y.
Tanimura
, “
Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach
,”
J. Phys. Soc. Jpn.
74
,
3131
3134
(
2005
).
80.
R. X.
Xu
and
Y.
Yan
, “
Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach
,”
Phys. Rev. E
75
,
031107
(
2007
).
81.
W. C.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T. E.
Markland
, “
Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics
,”
J. Chem. Phys.
150
,
244109
(
2019
).
82.
J. R.
Durrant
,
D. R.
Klug
,
S. L.
Kwa
,
R.
Van Grondelle
,
G.
Porter
, and
J. P.
Dekker
, “
A multimer model for P680, the primary electron donor of photosystem II
,”
Proc. Natl. Acad. Sci. U. S. A.
92
,
4798
4802
(
1995
).
83.
S. J.
Jang
and
B.
Mennucci
, “
Delocalized excitons in natural light-harvesting complexes
,”
Rev. Mod. Phys.
90
,
035003
(
2018
).
84.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
, “
Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes
,”
J. Chem. Phys.
103
,
3998
4011
(
1995
).
85.
B. J.
Ka
and
E.
Geva
, “
A nonperturbative calculation of nonlinear spectroscopic signals in liquid solution
,”
J. Chem. Phys.
125
,
214501
(
2006
).
86.
J.
Provazza
,
F.
Segatta
,
M.
Garavelli
, and
D. F.
Coker
, “
Semiclassical path integral calculation of nonlinear optical spectroscopy
,”
J. Chem. Theory Comput.
14
,
856
866
(
2018
).
87.
X.
Gao
and
E.
Geva
, “
A nonperturbative methodology for simulating multidimensional spectra of multiexcitonic molecular systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6491
6502
(
2020
).
88.
J.
Provazza
,
F.
Segatta
, and
D. F.
Coker
, “
Modeling nonperturbative field-driven vibronic dynamics: Selective state preparation and nonlinear spectroscopy
,”
J. Chem. Theory Comput.
17
,
29
39
(
2021
).
89.
J. H.
Fetherolf
and
T. C.
Berkelbach
, “
Linear and nonlinear spectroscopy from quantum master equations
,”
J. Chem. Phys.
147
,
244109
(
2017
).
90.
M.
Son
,
S.
Mosquera-Vázquez
, and
G. S.
Schlau-cohen
, “
Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection
,”
Opt. Express
25
,
18950
18962
(
2017
).
91.
G.
Hanna
and
E.
Geva
, “
Multidimensional spectra via the mixed quantum-classical Liouville method: Signatures of nonequilibrium dynamics
,”
J. Phys. Chem. B
113
,
9278
9288
(
2009
).
92.
P. L.
McRobbie
and
E.
Geva
, “
A benchmark study of different methods for calculating one- and two-dimensional optical spectra
,”
J. Phys. Chem. A
113
,
10425
10434
(
2009
).
93.
C. P.
van der Vegte
,
A. G.
Dijkstra
,
J.
Knoester
, and
T. L.
Jansen
, “
Calculating two-dimensional spectra with the mixed quantum-classical Ehrenfest method
,”
J. Phys. Chem. A
117
,
5970
5980
(
2013
).
94.
R.
Tempelaar
,
C. P.
van der Vegte
,
J.
Knoester
, and
T. L.
Jansen
, “
Surface hopping modeling of two-dimensional spectra
,”
J. Chem. Phys.
138
,
164106
(
2013
).
95.
K.
Polley
and
R. F.
Loring
, “
Two-dimensional vibrational-electronic spectra with semiclassical mechanics
,”
J. Chem. Phys.
154
,
194110
(
2021
).
96.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for simulating nonlinear optical spectra
,”
J. Chem. Phys.
156
,
024108
(
2022
).
97.
R. F.
Loring
, “
Calculating multidimensional optical spectra from classical trajectories
,”
Annu. Rev. Phys. Chem.
73
,
273
297
(
2022
).
98.
H. W.
Kim
and
Y. M.
Rhee
, “
Two-dimensional electronic spectrum simulation of simple photosynthetic complex models with semi-classical Poisson bracket mapping equation
,”
Bull. Korean Chem. Soc.
43
,
355
363
(
2022
).
99.
A. O.
Atsango
,
A.
Montoya-Castillo
, and
T. E.
Markland
, “
An accurate and efficient Ehrenfest dynamics approach for calculating linear and nonlinear electronic spectra
,”
J. Chem. Phys.
158
,
074107
(
2023
).
100.
M. E.
Mondal
,
E. R.
Koessler
,
J.
Provazza
,
A. N.
Vamivakas
,
S. T.
Cundiff
,
T. D.
Krauss
, and
P.
Huo
, “
Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons
,”
J. Chem. Phys.
159
,
094102
(
2023
).
101.
T.
Berkelbach
,
J.
Fetherolf
,
P.
Shih
, and
Iansdunn
, berkelbach-group/pyrho v1.0,
2020
.
You do not currently have access to this content.