The natural determinant reference (NDR) or principal natural determinant is the Slater determinant comprised of the N most strongly occupied natural orbitals of an N-electron state of interest. Unlike the Kohn–Sham (KS) determinant, which yields the exact ground-state density, the NDR only yields the best idempotent approximation to the interacting one-particle reduced density matrix, but it is well-defined in common atom-centered basis sets and is representation-invariant. We show that the under-determination problem of prior attempts to define a ground-state energy functional of the NDR is overcome in a grand-canonical ensemble framework at the zero-temperature limit. The resulting grand potential functional of the NDR ensemble affords the variational determination of the ground state energy, its NDR (ensemble), and select ionization potentials and electron affinities. The NDR functional theory can be viewed as an “exactification” of orbital optimization and empirical generalized KS methods. NDR functionals depending on the noninteracting Hamiltonian do not require troublesome KS-inversion or optimized effective potentials.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
3.
4.
5.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
,
Science
355
,
49
(
2017
).
6.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
,
Phys. Rev. Lett.
111
,
073003
(
2013
).
7.
8.
9.
V. K.
Voora
,
S. G.
Balasubramani
, and
F.
Furche
,
Phys. Rev. A
99
,
012518
(
2019
).
10.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
11.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
12.
Y.
Shi
and
A.
Wasserman
,
J. Phys. Chem. Lett.
12
,
5308
(
2021
).
13.
L. O.
Wagner
,
T. E.
Baker
,
E. M.
Stoudenmire
,
K.
Burke
, and
S. R.
White
,
Phys. Rev. B
90
,
045109
(
2014
).
14.
S.
Nam
,
R. J.
McCarty
,
H.
Park
, and
E.
Sim
,
J. Chem. Phys.
154
,
124122
(
2021
).
15.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
16.
E. R.
Johnson
,
A. D.
Becke
,
C. D.
Sherrill
, and
G. A.
DiLabio
,
J. Chem. Phys.
131
,
034111
(
2009
).
17.
A.
Heßelmann
,
A. W.
Götz
,
F.
Della Sala
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
18.

The original GKS scheme77 is well-defined but requires a local correlation potential.

19.
J. M.
Yu
,
B. D.
Nguyen
,
J.
Tsai
,
D. J.
Hernandez
, and
F.
Furche
,
J. Chem. Phys.
155
,
040902
(
2021
).
20.
G.
Zumbach
and
K.
Maschke
,
Phys. Rev. A
28
,
544
(
1983
).
21.
G.
Zumbach
and
K.
Maschke
,
Phys. Rev. A
29
,
1585
(
1984
).
22.
R. J.
Bartlett
,
V. F.
Lotrich
, and
I. V.
Schweigert
,
J. Chem. Phys.
123
,
062205
(
2005
).
23.
I.
Grabowski
,
A. M.
Teale
,
S.
Śmiga
, and
R. J.
Bartlett
,
J. Chem. Phys.
135
,
114111
(
2011
).
24.
S.
Kvaal
and
T.
Helgaker
,
J. Chem. Phys.
143
,
184106
(
2015
).
25.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
26.
M.
Levy
,
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
(
1979
).
27.
A. D.
Kaplan
,
M.
Levy
, and
J. P.
Perdew
,
Annu. Rev. Phys. Chem.
74
,
193
(
2023
).
28.

Although the name suggests otherwise, we refer to the abstract, representation-invariant operator by “1-RDM,” not a special matrix representation, unless stated otherwise.

29.
30.
J. E.
Osburn
and
M.
Levy
,
Phys. Rev. A
33
,
2230
(
1986
).
31.
J.
Cioslowski
,
K.
Pernal
, and
P.
Ziesche
,
J. Chem. Phys.
117
,
9560
(
2002
).
32.
M. A.
Buijse
and
E. J.
Baerends
,
Mol. Phys.
100
,
401
(
2002
).
33.
D. R.
Rohr
,
K.
Pernal
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
129
,
164105
(
2008
).
34.
T.
Baldsiefen
,
A.
Cangi
, and
E. K. U.
Gross
,
Phys. Rev. A
92
,
052514
(
2015
).
35.
W.
Kutzelnigg
and
J. D.
Morgan
III
,
J. Chem. Phys.
96
,
4484
(
1992
).
36.
W.
Kutzelnigg
and
V. H.
Smith
, Jr.
,
J. Chem. Phys.
41
,
896
(
1964
).
37.
38.
P.-O.
Löwdin
and
H.
Shull
,
Phys. Rev.
101
,
1730
(
1956
).
39.
40.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
125
,
171101
(
2006
).
41.
A. C.
Simmonett
,
J. J.
Wilke
,
H. F.
Schaefer
III
, and
W.
Kutzelnigg
,
J. Chem. Phys.
133
,
174122
(
2010
).
42.
A. G.
Taube
,
J. Chem. Phys.
133
,
151102
(
2010
).
43.
P.
Ziesche
,
Int. J. Quantum Chem.
56
,
363
(
1995
).
44.
P.
Gersdorf
,
W.
John
,
J. P.
Perdew
, and
P.
Ziesche
,
Int. J. Quantum Chem.
61
,
935
(
1997
).
45.
D. H.
Kobe
,
J. Chem. Phys.
50
,
5183
(
1969
).
46.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
47.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
,
International Series in Pure and Applied Physics
(
McGraw-Hill
,
New York
,
1971
).
49.
K. D.
Carlson
and
D. R.
Whitman
,
Int. J. Quantum Chem.
1
,
81
(
1967
).
50.
B.
Levy
and
G.
Berthier
,
Int. J. Quantum Chem.
2
,
307
(
1968
).
52.
H. W.
Kuhn
and
A. W.
Tucker
, in
Berkeley Symposium on Mathematical Statistics and Probability
(
University of California Press
,
1951
), Vol.
2
, p.
481
.
53.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Phys. Rev. B
77
,
115123
(
2008
).
54.
W.
Yang
,
A. J.
Cohen
, and
P.
Mori-Sánchez
,
J. Chem. Phys.
136
,
204111
(
2012
).
55.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K. U.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
,
H.
Peng
,
J.
Sun
,
E.
Trushin
, and
A.
Görling
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
2801
(
2017
).
56.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
57.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
31
,
6264
(
1985
).
58.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
59.
W.
Yang
,
J. Chem. Phys.
109
,
10107
(
1998
).
60.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
61.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
,
J. Chem. Phys.
123
,
062201
(
2005
).
62.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
).
63.
L. A.
Constantin
,
J. P.
Perdew
, and
J.
Tao
,
Phys. Rev. B
73
,
205104
(
2006
).
64.
H.
Bahmann
,
Y.
Zhou
, and
M.
Ernzerhof
,
J. Chem. Phys.
145
,
124104
(
2016
).
65.
P.
Gori-Giorgi
and
P.
Ziesche
,
Phys. Rev. B
66
,
235116
(
2002
).
66.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
III
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
67.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2371
(
2014
).
68.
D.
Stück
and
M.
Head-Gordon
,
J. Chem. Phys.
139
,
244109
(
2013
).
69.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
70.
71.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
,
Theor. Chem. Acc.
131
,
1084
(
2012
).
72.
R. J.
Bartlett
,
J. Chem. Phys.
151
,
160901
(
2019
).
73.
W.
Kutzelnigg
,
Theor. Chim. Acta
1
,
327
(
1963
).
74.
W.
Kutzelnigg
,
Theor. Chim. Acta
1
,
343
(
1963
).
75.
R.
Ahlrichs
,
W.
Kutzelnigg
, and
W.
Bingel
,
Theor. Chim. Acta
5
,
289
(
1966
).
76.
D. A.
Mazziotti
,
Chem. Rev.
112
,
224
(
2012
).
77.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
78.
A. S.
Lewis
,
SIAM J. Optim.
6
,
164
(
1996
).
79.
C. M.
Theobald
,
Math. Proc. Camb. Phil. Soc.
77
,
265
(
1975
).
You do not currently have access to this content.