Accurate thermodynamic stability predictions enable data-driven computational materials design. Standard density functional theory (DFT) approximations have limited accuracy with average errors of a few hundred meV/atom for ionic materials, such as oxides and nitrides. Thus, insightful correction schemes as given by the coordination corrected enthalpies (CCE) method, based on an intuitive parametrization of DFT errors with respect to coordination numbers and cation oxidation states, present a simple, yet accurate solution to enable materials stability assessments. Here, we illustrate the computational capabilities of our AFLOW-CCE software by utilizing our previous results for oxides and introducing new results for nitrides. The implementation reduces the deviations between theory and experiment to the order of the room temperature thermal energy scale, i.e., ∼25 meV/atom. The automated corrections for both materials classes are freely available within the AFLOW ecosystem via the AFLOW-CCE module, requiring only structural inputs.

1.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
2.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
3.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
4.
C.
Oses
,
M.
Esters
,
D.
Hicks
,
S.
Divilov
,
H.
Eckert
,
R.
Friedrich
,
M. J.
Mehl
,
A.
Smolyanyuk
,
X.
Campilongo
,
A.
van de Walle
,
J.
Schroers
,
A. G.
Kusne
,
I.
Takeuchi
,
E.
Zurek
,
M. B.
Nardelli
,
M.
Fornari
,
Y.
Lederer
,
O.
Levy
,
C.
Toher
, and
S.
Curtarolo
, “
aflow++: A C++ framework for autonomous materials design
,”
Comput. Mater. Sci.
217
,
111889
(
2023
).
5.
M.
Esters
,
C.
Oses
,
S.
Divilov
,
H.
Eckert
,
R.
Friedrich
,
D.
Hicks
,
M. J.
Mehl
,
F.
Rose
,
A.
Smolyanyuk
,
A.
Calzolari
,
X.
Campilongo
,
C.
Toher
, and
S.
Curtarolo
, “
aflow.org: A web ecosystem of databases, software and tools
,”
Comput. Mater. Sci.
216
,
111808
(
2023
).
6.
S.
Curtarolo
,
W.
Setyawan
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
R. H.
Taylor
,
L. J.
Nelson
,
G. L. W.
Hart
,
S.
Sanvito
,
M.
Buongiorno Nardelli
,
N.
Mingo
, and
O.
Levy
, “
AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
,”
Comput. Mater. Sci.
58
,
227
235
(
2012
).
7.
A.
Jain
,
G.
Hautier
,
C. J.
Moore
,
S.
Ping Ong
,
C. C.
Fischer
,
T.
Mueller
,
K. A.
Persson
, and
G.
Ceder
, “
A high-throughput infrastructure for density functional theory calculations
,”
Comput. Mater. Sci.
50
,
2295
2310
(
2011
).
8.
J. E.
Saal
,
S.
Kirklin
,
M.
Aykol
,
B.
Meredig
, and
C.
Wolverton
, “
Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)
,”
JOM
65
,
1501
1509
(
2013
).
9.
S.
Kirklin
,
J. E.
Saal
,
B.
Meredig
,
A.
Thompson
,
J. W.
Doak
,
M.
Aykol
,
S.
Rühl
, and
C.
Wolverton
, “
The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies
,”
npj Comput. Mater.
1
,
15010
(
2015
).
10.
C.
Draxl
and
M.
Scheffler
, “
NOMAD: The FAIR concept for big data-driven materials science
,”
MRS Bull.
43
,
676
682
(
2018
).
11.
S. R.
Bahn
and
K. W.
Jacobsen
, “
An object-oriented scripting interface to a legacy electronic structure code
,”
Comput. Sci. Eng.
4
,
56
66
(
2002
).
12.
D. D.
Landis
,
J. S.
Hummelshoj
,
S.
Nestorov
,
J.
Greeley
,
M.
Dułak
,
T.
Bligaard
,
J. K.
Norskov
, and
K. W.
Jacobsen
, “
The computational materials repository
,”
Comput. Sci. Eng.
14
,
51
57
(
2012
).
13.
G.
Pizzi
,
A.
Cepellotti
,
R.
Sabatini
,
N.
Marzari
, and
B.
Kozinsky
, “
AiiDA: Automated interactive infrastructure and database for computational science
,”
Comput. Mater. Sci.
111
,
218
230
(
2016
).
14.
P. A. M.
Dirac
, “
Quantum mechanics of many-electron systems
,”
Proc. R. Soc. London, Ser. A
123
,
714
733
(
1929
).
15.
M. J.
Mehl
,
M.
Ronquillo
,
D.
Hicks
,
M.
Esters
,
C.
Oses
,
R.
Friedrich
,
A.
Smolyanyuk
,
E.
Gossett
,
D.
Finkenstadt
, and
S.
Curtarolo
, “
Tin-pest problem as a test of density functionals using high-throughput calculations
,”
Phys. Rev. Mater.
5
,
083608
(
2021
).
16.
P.
Sarker
,
T.
Harrington
,
C.
Toher
,
C.
Oses
,
M.
Samiee
,
J. -P.
Maria
,
D. W.
Brenner
,
K. S.
Vecchio
, and
S.
Curtarolo
, “
High-entropy high-hardness metal carbides discovered by entropy descriptors
,”
Nat. Commun.
9
,
4980
(
2018
).
17.
C.
Oses
,
C.
Toher
, and
S.
Curtarolo
, “
High-entropy ceramics
,”
Nat. Rev. Mater.
5
,
295
309
(
2020
).
18.
J.
Gil
and
T.
Oda
, “
Correction methods for first-principles calculations of the solution enthalpy of gases and compounds in liquid metals
,”
Phys. Chem. Chem. Phys.
24
,
757
770
(
2022
).
19.
A.
Puthirath Balan
,
S.
Radhakrishnan
,
C. F.
Woellner
,
S. K.
Sinha
,
L.
Deng
,
C. d. l.
Reyes
,
B. M.
Rao
,
M.
Paulose
,
R.
Neupane
,
A.
Apte
,
V.
Kochat
,
R.
Vajtai
,
A. R.
Harutyunyan
,
C.-W.
Chu
,
G.
Costin
,
D. S.
Galvao
,
A. A.
Martí
,
P. A.
van Aken
,
O. K.
Varghese
,
C. S.
Tiwary
,
A.
Malie Madom Ramaswamy Iyer
, and
P. M.
Ajayan
, “
Exfoliation of a non-van der Waals material from iron ore hematite
,”
Nat. Nanotechnol.
13
,
602
609
(
2018
).
20.
R.
Friedrich
,
M.
Ghorbani-Asl
,
S.
Curtarolo
, and
A. V.
Krasheninnikov
, “
Data-driven quest for two-dimensional non-van der Waals materials
,”
Nano Lett.
22
,
989
997
(
2022
).
21.
T.
Barnowsky
,
A. V.
Krasheninnikov
, and
R.
Friedrich
, “
A new group of 2D non-van der Waals materials with ultra low exfoliation energies
,”
Adv. Electron. Mater.
9
,
2201112
(
2023
).
22.
A. P.
Balan
,
A. B.
Puthirath
,
S.
Roy
,
G.
Costin
,
E. F.
Oliveira
,
M. A. S. R.
Saadi
,
V.
Sreepal
,
R.
Friedrich
,
P.
Serles
,
A.
Biswas
,
S. A.
Iyengar
,
N.
Chakingal
,
S.
Bhattacharyya
,
S. K.
Saju
,
S. C.
Pardo
,
L. M.
Sassi
,
T.
Filleter
,
A.
Krasheninnikov
,
D. S.
Galvao
,
R.
Vajtai
,
R. R.
Nair
, and
P. M.
Ajayan
, “
Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications
,”
Mater. Today
58
,
164
(
2022
).
23.
H.
Kaur
and
J. N.
Coleman
, “
Liquid-phase exfoliation of nonlayered non-van-der-Waals crystals into nanoplatelets
,”
Adv. Mater.
34
,
2202164
(
2022
).
24.
L.
Wang
,
T.
Maxisch
, and
G.
Ceder
, “
Oxidation energies of transition metal oxides within the GGA+U framework
,”
Phys. Rev. B
73
,
195107
(
2006
).
25.
S.
Lany
, “
Semiconductor thermochemistry in density functional calculations
,”
Phys. Rev. B
78
,
245207
(
2008
).
26.
A.
Jain
,
G.
Hautier
,
S. P.
Ong
,
C. J.
Moore
,
C. C.
Fischer
,
K. A.
Persson
, and
G.
Ceder
, “
Formation enthalpies by mixing GGA and GGA+U calculations
,”
Phys. Rev. B
84
,
045115
(
2011
).
27.
V.
Stevanović
,
S.
Lany
,
X.
Zhang
, and
A.
Zunger
, “
Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies
,”
Phys. Rev. B
85
,
115104
(
2012
).
28.
J.
Yan
,
J. S.
Hummelshøj
, and
J. K.
Nørskov
, “
Formation energies of group I and II metal oxides using random phase approximation
,”
Phys. Rev. B
87
,
075207
(
2013
).
29.
T. S.
Jauho
,
T.
Olsen
,
T.
Bligaard
, and
K. S.
Thygesen
, “
Improved description of metal oxide stability: Beyond the random phase approximation with renormalized kernels
,”
Phys. Rev. B
92
,
115140
(
2015
).
30.
Y.
Zhang
,
D. A.
Kitchaev
,
J.
Yang
,
T.
Chen
,
S. T.
Dacek
,
R. A.
Sarmiento-Pérez
,
M. A. L.
Marques
,
H.
Peng
,
G.
Ceder
,
J. P.
Perdew
, and
J.
Sun
, “
Efficient first-principles prediction of solid stability: Towards chemical accuracy
,”
npj Comput. Mater.
4
,
9
(
2018
).
31.
E. B.
Isaacs
and
C.
Wolverton
, “
Performance of the strongly constrained and appropriately normed density functional for solid-state materials
,”
Phys. Rev. Mater.
2
,
063801
(
2018
).
32.
R.
Friedrich
,
D.
Usanmaz
,
C.
Oses
,
A.
Supka
,
M.
Fornari
,
M.
Buongiorno Nardelli
,
C.
Toher
, and
S.
Curtarolo
, “
Coordination corrected ab initio formation enthalpies
,”
npj Comput. Mater.
5
,
59
(
2019
).
33.
O.
Kubaschewski
,
C. B.
Alcock
, and
P. J.
Spencer
,
Materials Thermochemistry
, 6th ed. (
Pergamon Press
,
Oxford, UK
,
1993
).
34.
M. W.
Chase
, Jr.
,
NIST-JANAF Thermochemical Tables
, 4th ed. (
American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology
,
Woodbury, NY
,
1998
).
35.
I.
Barin
,
Thermochemical Data of Pure Substances
, 3rd ed. (
VCH
,
Weinheim
,
1995
).
36.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
The NBS Tables of Chemical Thermodynamic Properties
,
Journal of Physical and Chemical Reference Data Vol. 11
(
American Chemical Society and American Institute of Physics for the National Bureau of Standards
,
1982
), Supplement No. 2.
37.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
38.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the Fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
39.
D.-y.
Kao
,
K.
Withanage
,
T.
Hahn
,
J.
Batool
,
J.
Kortus
, and
K.
Jackson
, “
Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li–Kr
,”
J. Chem. Phys.
147
,
164107
(
2017
).
40.
S.
Schwalbe
,
T.
Hahn
,
S.
Liebing
,
K.
Trepte
, and
J.
Kortus
, “
Fermi-Löwdin orbital self-interaction corrected density functional theory: Ionization potentials and enthalpies of formation
,”
J. Comput. Chem.
39
,
2463
2471
(
2018
).
41.
M.
Pozzo
and
D.
Alfé
, “
Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations
,”
Phys. Rev. B
77
,
104103
(
2008
).
42.
G.
Mao
,
X.
Hu
,
X.
Wu
,
Y.
Dai
,
S.
Chu
, and
J.
Deng
, “
Benchmark quantum Monte Carlo calculation of the enthalpy of formation of MgH2
,”
Int. J. Hydrogen Energy
36
,
8388
8391
(
2011
).
43.
E. B.
Isaacs
,
H.
Shin
,
A.
Annaberdiyev
,
C.
Wolverton
,
L.
Mitas
,
A.
Benali
, and
O.
Heinonen
, “
Assessing the accuracy of compound formation energies with quantum Monte Carlo
,”
Phys. Rev. B
105
,
224110
(
2022
).
44.
A.
Wang
,
R.
Kingsbury
,
M.
McDermott
,
M.
Horton
,
A.
Jain
,
S. P.
Ong
,
S.
Dwaraknath
, and
K. A.
Persson
, “
A framework for quantifying uncertainty in DFT energy corrections
,”
Sci. Rep.
11
,
15496
(
2021
).
45.
M.
Aykol
and
C.
Wolverton
, “
Local environment dependent GGA+U method for accurate thermochemistry of transition metal compounds
,”
Phys. Rev. B
90
,
115105
(
2014
).
46.
N.
Artrith
,
J. A.
Garrido Torres
,
A.
Urban
, and
M. S.
Hybertsen
, “
Data-driven approach to parameterize SCAN+U for an accurate description of 3d transition metal oxide thermochemistry
,”
Phys. Rev. Mater.
6
,
035003
(
2022
).
47.
R. S.
Kingsbury
,
A. S.
Rosen
,
A. S.
Gupta
,
J. M.
Munro
,
S. P.
Ong
,
A.
Jain
,
S.
Dwaraknath
,
M. K.
Horton
, and
K. A.
Persson
, “
A flexible and scalable scheme for mixing computed formation energies from different levels of theory
,”
npj Comput. Mater.
8
,
195
(
2022
).
48.
S.
Gong
,
S.
Wang
,
T.
Xie
,
W. H.
Chae
,
R.
Liu
,
Y.
Shao-Horn
, and
J. C.
Grossman
, “
Calibrating DFT formation enthalpy calculations by multifidelity machine learning
,”
JACS Au
2
,
1964
1977
(
2022
).
49.
S.
Grindy
,
B.
Meredig
,
S.
Kirklin
,
J. E.
Saal
, and
C.
Wolverton
, “
Approaching chemical accuracy with density functional calculations: Diatomic energy corrections
,”
Phys. Rev. B
87
,
075150
(
2013
).
50.
Y.
Yu
,
M.
Aykol
, and
C.
Wolverton
, “
Reaction thermochemistry of metal sulfides with GGA and GGA+U calculations
,”
Phys. Rev. B
92
,
195118
(
2015
).
51.
R.
Friedrich
,
M.
Esters
,
C.
Oses
,
S.
Ki
,
M. J.
Brenner
,
D.
Hicks
,
M. J.
Mehl
,
C.
Toher
, and
S.
Curtarolo
, “
Automated coordination corrected enthalpies with AFLOW-CCE
,”
Phys. Rev. Mater.
5
,
043803
(
2021
).
52.
M. A.
Blanco
,
A. M.
Pendás
,
E.
Francisco
,
J. M.
Recio
, and
R.
Franco
, “
Thermodynamical properties of solids from microscopic theory: Applications to MgF2 and Al2O3
,”
J. Mol. Struct.: THEOCHEM
368
,
245
255
(
1996
).
53.
M. A.
Blanco
,
E.
Francisco
, and
V.
Luaña
, “
GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model
,”
Comput. Phys. Commun.
158
,
57
72
(
2004
).
54.
C.
Toher
,
J. J.
Plata
,
O.
Levy
,
M.
de Jong
,
M.
Asta
,
M. B.
Nardelli
, and
S.
Curtarolo
, “
High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model
,”
Phys. Rev. B
90
,
174107
(
2014
).
55.
C.
Toher
,
C.
Oses
,
J. J.
Plata
,
D.
Hicks
,
F.
Rose
,
O.
Levy
,
M.
de Jong
,
M.
Asta
,
M.
Fornari
,
M.
Buongiorno Nardelli
, and
S.
Curtarolo
, “
Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids
,”
Phys. Rev. Mater.
1
,
015401
(
2017
).
56.
J.-P.
Poirier
,
Introduction to the Physics of the Earth’s Interior
, 2nd ed. (
Cambridge University Press
,
2000
).
57.
J. J.
Plata
,
P.
Nath
,
D.
Usanmaz
,
J.
Carrete
,
C.
Toher
,
M.
de Jong
,
M. D.
Asta
,
M.
Fornari
,
M. B.
Nardelli
, and
S.
Curtarolo
, “
An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW–AAPL automatic anharmonic phonon library
,”
npj Comput. Mater.
3
,
45
(
2017
).
58.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M. L.
Klein
, and
J. P.
Perdew
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
(
2016
).
59.
C. E.
Calderon
,
J. J.
Plata
,
C.
Toher
,
C.
Oses
,
O.
Levy
,
M.
Fornari
,
A.
Natan
,
M. J.
Mehl
,
G. L. W.
Hart
,
M.
Buongiorno Nardelli
, and
S.
Curtarolo
, “
The AFLOW standard for high-throughput materials science calculations
,”
Comput. Mater. Sci.
108
,
233
238
(
2015
).
60.
G.
Hautier
,
S. P.
Ong
,
A.
Jain
,
C. J.
Moore
, and
G.
Ceder
, “
Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability
,”
Phys. Rev. B
85
,
155208
(
2012
).
61.
J. M.
McHale
,
A.
Navrotsky
,
G. R.
Kowach
,
V. E.
Balbarin
, and
F. J.
DiSalvo
, “
Energetics of ternary nitrides: Li–Ca–Zn–N and Ca–Ta–N systems
,”
Chem. Mater.
9
,
1538
1546
(
1997
).
62.
J. M.
McHale
,
A.
Navrotsky
, and
F. J.
DiSalvo
, “
Energetics of ternary nitride formation in the (Li, Ca)–(B, Al)–N system
,”
Chem. Mater.
11
,
1148
1152
(
1999
).
63.
O.
Levy
,
R. V.
Chepulskii
,
G. L. W.
Hart
, and
S.
Curtarolo
, “
The new face of rhodium alloys: Revealing ordered structures from first principles
,”
J. Am. Chem. Soc.
132
,
833
837
(
2010
).
64.
O.
Levy
,
G. L. W.
Hart
, and
S.
Curtarolo
, “
Structure maps for hcp metals from first-principles calculations
,”
Phys. Rev. B
81
,
174106
(
2010
).
65.
O.
Levy
,
M.
Jahnátek
,
R. V.
Chepulskii
,
G. L. W.
Hart
, and
S.
Curtarolo
, “
Ordered structures in rhenium binary alloys from first-principles calculations
,”
J. Am. Chem. Soc.
133
,
158
163
(
2011
).
66.
S.
Curtarolo
,
W.
Setyawan
,
G. L. W.
Hart
,
M.
Jahnátek
,
R. V.
Chepulskii
,
R. H.
Taylor
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
O.
Levy
,
M. J.
Mehl
,
H. T.
Stokes
,
D. O.
Demchenko
, and
D.
Morgan
, “
AFLOW: An automatic framework for high-throughput materials discovery
,”
Comput. Mater. Sci.
58
,
218
226
(
2012
).
67.
K.
Yang
,
C.
Oses
, and
S.
Curtarolo
, “
Modeling off-stoichiometry materials with a high-throughput ab-initio approach
,”
Chem. Mater.
28
,
6484
6492
(
2016
).
68.
A. R.
Supka
,
T. E.
Lyons
,
L. S. I.
Liyanage
,
P.
D’Amico
,
R.
Al Rahal Al Orabi
,
S.
Mahatara
,
P.
Gopal
,
C.
Toher
,
D.
Ceresoli
,
A.
Calzolari
,
S.
Curtarolo
,
M. B.
Nardelli
, and
M.
Fornari
, “
AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians
,”
Comput. Mater. Sci.
136
,
76
84
(
2017
).
69.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
70.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
71.
R. H.
Taylor
,
F.
Rose
,
C.
Toher
,
O.
Levy
,
K.
Yang
,
M.
Buongiorno Nardelli
, and
S.
Curtarolo
, “
A RESTful API for exchanging materials data in the AFLOWLIB.org consortium
,”
Comput. Mater. Sci.
93
,
178
192
(
2014
).
72.
F.
Rose
,
C.
Toher
,
E.
Gossett
,
C.
Oses
,
M. B.
Nardelli
,
M.
Fornari
, and
S.
Curtarolo
, “
AFLUX: The LUX materials search API for the AFLOW data repositories
,”
Comput. Mater. Sci.
137
,
362
370
(
2017
).
73.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
74.
U.
von Barth
and
L.
Hedin
, “
A local exchange-correlation potential for the spin polarized case: I
,”
J. Phys. C: Solid State Phys.
5
,
1629
(
1972
).
75.
L. C.
Allen
, “
Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms
,”
J. Am. Chem. Soc.
111
,
9003
9014
(
1989
).
76.
J. B.
Mann
,
T. L.
Meek
, and
L. C.
Allen
, “
Configuration energies of the main group elements
,”
J. Am. Chem. Soc.
122
,
2780
2783
(
2000
).
77.
J. B.
Mann
,
T. L.
Meek
,
E. T.
Knight
,
J. F.
Capitani
, and
L. C.
Allen
, “
Configuration energies of the d-block elements
,”
J. Am. Chem. Soc.
122
,
5132
5137
(
2000
).
78.
W.
Sun
,
A.
Holder
,
B.
Orvañanos
,
E.
Arca
,
A.
Zakutayev
,
S.
Lany
, and
G.
Ceder
, “
Thermodynamic routes to novel metastable nitrogen-rich nitrides
,”
Chem. Mater.
29
,
6936
6946
(
2017
).
79.
W.
Sun
,
C. J.
Bartel
,
E.
Arca
,
S. R.
Bauers
,
B.
Matthews
,
B.
Orvañanos
,
B.-R.
Chen
,
M. F.
Toney
,
L. T.
Schelhas
,
W.
Tumas
,
J.
Tate
,
A.
Zakutayev
,
S.
Lany
,
A. M.
Holder
, and
G.
Ceder
, “
A map of the inorganic ternary metal nitrides
,”
Nat. Mater.
18
,
732
739
(
2019
).
80.
M. R.
Ranade
,
F.
Tessier
,
A.
Navrotsky
,
V. J.
Leppert
,
S. H.
Risbud
,
F. J.
DiSalvo
, and
C. M.
Balkas
, “
Enthalpy of formation of gallium nitride
,”
J. Phys. Chem. B
104
,
4060
4063
(
2000
).
81.
M. J.
Mehl
,
D.
Hicks
,
C.
Toher
,
O.
Levy
,
R. M.
Hanson
,
G. L. W.
Hart
, and
S.
Curtarolo
, “
The AFLOW library of crystallographic prototypes: Part 1
,”
Comput. Mater. Sci.
136
,
S1
S828
(
2017
).
82.
D.
Hicks
,
M. J.
Mehl
,
E.
Gossett
,
C.
Toher
,
O.
Levy
,
R. M.
Hanson
,
G. L. W.
Hart
, and
S.
Curtarolo
, “
The AFLOW library of crystallographic prototypes: Part 2
,”
Comput. Mater. Sci.
161
,
S1
S1011
(
2019
).
83.
D.
Hicks
,
M. J.
Mehl
,
M.
Esters
,
C.
Oses
,
O.
Levy
,
G. L. W.
Hart
,
C.
Toher
, and
S.
Curtarolo
, “
The AFLOW library of crystallographic prototypes: Part 3
,”
Comput. Mater. Sci.
199
,
110450
(
2021
).
84.
D.
Hicks
,
C.
Oses
,
E.
Gossett
,
G.
Gomez
,
R. H.
Taylor
,
C.
Toher
,
M. J.
Mehl
,
O.
Levy
, and
S.
Curtarolo
, “
AFLOW-SYM: Platform for the complete, automatic and self-consistent symmetry analysis of crystals
,”
Acta Crystallogr., Sect. A: Found. Adv.
74
,
184
203
(
2018
).
You do not currently have access to this content.