The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.

1.
P.
Meti
,
H.-H.
Park
, and
Y.-D.
Gong
, “
Recent developments in pyrazine functionalized π-conjugated materials for optoelectronic applications
,”
J. Mater. Chem. C
8
,
352
379
(
2020
).
2.
K.
Budzalek
,
H.
Ding
,
L.
Janasz
,
A.
Wypych-Puszkarz
,
O.
Cetinkaya
,
J.
Pietrasik
,
M.
Kozanecki
,
J.
Ulanski
, and
K.
Matyjaszewski
, “
Star polymer–TiO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs
,”
J. Mater. Chem. C
9
,
1269
1278
(
2021
).
3.
H.
Kwon
,
H.
Ye
,
K.
Shim
,
H. G.
Girma
,
X.
Tang
,
B.
Lim
,
Y.
Kim
,
J.
Lee
,
C. E.
Park
,
S.-H.
Jung
et al, “
Newly synthesized nonvacuum processed high-k polymeric dielectrics with carboxyl functionality for highly stable operating printed transistor applications
,”
Adv. Funct. Mater.
31
,
2007304
(
2021
).
4.
T.
Mukhopadhyaya
,
J. S.
Wagner
,
H.
Fan
, and
H. E.
Katz
, “
Design and synthesis of air-stable p-channel-conjugated polymers for high signal-to-drift nitrogen dioxide and ammonia sensing
,”
ACS Appl. Mater. Interfaces
12
,
21974
21984
(
2020
).
5.
N.
Kamatham
,
O. A.
Ibraikulov
,
P.
Durand
,
J.
Wang
,
O.
Boyron
,
B.
Heinrich
,
T.
Heiser
,
P.
Lévêque
,
N.
Leclerc
, and
S.
Méry
, “
On the impact of linear siloxanated side chains on the molecular self-assembling and charge transport properties of conjugated polymers
,”
Adv. Funct. Mater.
31
,
2007734
(
2021
).
6.
T.
Afzal
,
M. J.
Iqbal
,
M. Z.
Iqbal
,
A.
Sajjad
,
M. A.
Raza
,
S.
Riaz
,
M. A.
Kamran
,
A.
Numan
, and
S.
Naseem
, “
Effect of post-deposition annealing temperature on the charge carrier mobility and morphology of DPPDTT based organic field effect transistors
,”
Chem. Phys. Lett.
750
,
137507
(
2020
).
7.
X.
Wu
,
R.
Jia
,
J.
Pan
,
X.
Zhang
, and
J.
Jie
, “
Roles of interfaces in the ideality of organic field-effect transistors
,”
Nanoscale Horiz.
5
,
454
472
(
2020
).
8.
H.
Chen
,
W.
Zhang
,
M.
Li
,
G.
He
, and
X.
Guo
, “
Interface engineering in organic field-effect transistors: Principles, applications, and perspectives
,”
Chem. Rev.
120
,
2879
2949
(
2020
).
9.
X.
Wu
,
Y.
Chu
,
R.
Liu
,
H. E.
Katz
, and
J.
Huang
, “
Pursuing polymer dielectric interfacial effect in organic transistors for photosensing performance optimization
,”
Adv. Sci.
4
,
1700442
(
2017
).
10.
M. J.
Iqbal
,
M. Z.
Iqbal
,
T.
Afzal
,
M. A.
Raza
,
K.
Saghir
,
M. A.
Raza
,
S.
Atiq
,
S.
Riaz
, and
S.
Naseem
, “
Impact of interfacial trap states on achieving bias stability in polymer field-effect transistors
,”
Microelectron. Eng.
247
,
111602
(
2021
).
11.
M. Z.
Iqbal
,
S.
Khan
,
A.
Rehman
,
S. S.
Haider
,
M. A.
Kamran
,
M. R.
Abdul Karim
,
T.
Alharbi
,
T.
Hussain
,
S.
Riaz
,
S.
Naseem
, and
M. J.
Iqbal
, “
Enhancement in the mobility of solution processable polymer based FET by incorporating graphene interlayer
,”
Superlattices Microstruct.
137
,
106331
(
2020
).
12.
Y.
Zang
,
D.
Huang
,
C.
Di
, and
D.
Zhu
, “
Device engineered organic transistors for flexible sensing applications
,”
Adv. Mater.
28
,
4549
4555
(
2016
).
13.
B. B.
Patil
, “
Enhancing the electrical performance of the donor-acceptor conjugated polymer based organic field effect transistors through device engineering for electronic applications
,” Ph.D. thesis,
Queensland University of Technology
,
2021
.
14.
Y.
Gao
,
Y.
Deng
,
H.
Tian
,
J.
Zhang
,
D.
Yan
,
Y.
Geng
, and
F.
Wang
, “
Multifluorination toward high-mobility ambipolar and unipolar n-type donor–acceptor conjugated polymers based on isoindigo
,”
Adv. Mater.
29
,
1606217
(
2017
).
15.
Z.
Ni
,
H.
Wang
,
Q.
Zhao
,
J.
Zhang
,
Z.
Wei
,
H.
Dong
, and
W.
Hu
, “
Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step C–H activation strategy
,”
Adv. Mater.
31
,
1806010
(
2019
).
16.
X.
Zhu
,
S.-R.
Zhang
,
Y.
Zhou
, and
S.-T.
Han
, “
Ambipolar polymers for transistor applications
,”
Polym. Int.
70
,
358
(
2020
).
17.
Y.
Xu
,
Y.
Shi
,
C.
Qian
,
P.
Xie
,
C.
Jin
,
X.
Shi
,
G.
Zhang
,
W.
Liu
,
C.
Wan
,
J. C.
Ho
et al, “
Optically readable organic electrochemical synaptic transistors for neuromorphic photonic image processing
,”
Nano Lett.
23
,
5264
(
2023
).
18.
X.
Shi
,
W.
Liu
,
Y.
Xu
,
C.
Jin
,
G.
Zhang
,
Y.
Shi
,
H.
Huang
,
J.
Sun
, and
J.
Yang
, “
Ultraviolet-selective organic phototransistors for low-power skin-inspired nociceptor
,”
Nano Energy
110
,
108372
(
2023
).
19.
J.
Liu
,
E.
Sheina
,
T.
Kowalewski
, and
R. D.
McCullough
, “
Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: Nanowire morphologies in new di- and triblock copolymers
,”
Angew. Chem., Int. Ed.
41
,
329
332
(
2002
).
20.
A.
Babel
and
S. A.
Jenekhe
, “
Morphology and field-effect mobility of charge carriers in binary blends of poly(3-hexylthiophene) with poly[2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene] and polystyrene
,”
Macromolecules
37
,
9835
9840
(
2004
).
21.
C.
Ton-That
,
A. G.
Shard
,
D. O. H.
Teare
, and
R. H.
Bradley
, “
XPS and AFM surface studies of solvent-cast PS/PMMA blends
,”
Polymer
42
,
1121
1129
(
2001
).
22.
M.
Sprenger
,
S.
Walheim
,
A.
Budkowski
, and
U.
Steiner
, “
Hierarchic structure formation in binary and ternary polymer blends
,”
Interface Sci.
11
,
225
235
(
2003
).
23.
M.
Li
,
S.
Xu
, and
E.
Kumacheva
, “
Convection in polymeric fluids subjected to vertical temperature gradients
,”
Macromolecules
33
,
4972
4978
(
2000
).
24.
S.
Walheim
,
M.
Böltau
,
J.
Mlynek
,
G.
Krausch
, and
U.
Steiner
, “
Structure formation via polymer demixing in spin-cast films
,”
Macromolecules
30
,
4995
5003
(
1997
).
25.
J.
Rodríguez-Hernández
, “
Nano/micro and hierarchical structured surfaces in polymer blends
,” in
Nanostructured Polymer Blends
(
Elsevier
,
2014
), pp.
357
421
.
26.
J. H.
Lee
,
Y. H.
Lee
,
Y. H.
Ha
,
J.
Kwon
,
S.
Pyo
,
Y.-H.
Kim
, and
W. H.
Lee
, “
Semiconducting/insulating polymer blends with dual phase separation for organic field-effect transistors
,”
RSC Adv.
7
,
7526
7530
(
2017
).
27.
L.
Tang
,
P.
He
,
X.
Qiao
,
Q.
Qian
, and
H.
Li
, “
Phase separation and electrical performance of bithienopyrroledione polymer semiconductors embedded in insulating polymers
,”
Mater. Chem. Front.
1
,
2265
2270
(
2017
).
28.
S.
Choi
,
J. W.
Jeong
,
G.
Jo
,
B. C.
Ma
, and
M.
Chang
, “
Conjugated polymer/paraffin blends for organic field-effect transistors with high environmental stability
,”
Nanoscale
11
,
10004
10016
(
2019
).
29.
Y.
Lei
, “
Morphology and microstructure control of conjugated polymer thin films for high performance field-effect transistors
,” Doctoral thesis (Hong Kong Baptist University,
2016
).
30.
Y.
Lei
,
N.
Li
,
W.-K. E.
Chan
,
B. S.
Ong
, and
F.
Zhu
, “
Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks
,”
Org. Electron.
48
,
12
18
(
2017
).
31.
S. Y.
Heriot
and
R. A.
Jones
, “
An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films
,”
Nat. Mater.
4
,
782
786
(
2005
).
32.
M.
Ullah
,
K.
Tandy
,
S. D.
Yambem
,
K.
Muhieddine
,
W. J.
Ong
,
Z.
Shi
,
P. L.
Burn
,
P.
Meredith
,
J.
Li
, and
E. B.
Namdas
, “
Efficient and bright polymer light emitting field effect transistors
,”
Org. Electron.
17
,
371
376
(
2015
).
33.
L.
Qiu
,
J. A.
Lim
,
X.
Wang
,
W. H.
Lee
,
M.
Hwang
, and
K.
Cho
, “
Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors
,”
Adv. Mater.
20
,
1141
1145
(
2008
).
34.
Y.
Lei
,
B.
Wu
,
W.-K. E.
Chan
,
F.
Zhu
, and
B. S.
Ong
, “
Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance
,”
J. Mater. Chem. C
3
,
12267
12272
(
2015
).
35.
R. M.
Ahmed
, “
Optical study on poly(methyl methacrylate)/poly(vinyl acetate) blends
,”
Int. J. Photoenergy
2009
,
150389
.
36.
B. S.
Ong
,
Y.
Wu
,
P.
Liu
, and
S.
Gardner
, “
Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors
,”
Adv. Mater.
17
,
1141
1144
(
2005
).
37.
T.
Lei
,
J.-H.
Dou
, and
J.
Pei
, “
Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors
,”
Adv. Mater.
24
,
6457
6461
(
2012
).
38.
X. D.
Zhou
,
S. C.
Zhang
,
W.
Huebner
,
P. D.
Ownby
, and
H.
Gu
, “
Effect of the solvent on the particle morphology of spray dried PMMA
,”
J. Mater. Sci.
36
,
3759
3768
(
2001
).
39.
Y.
Lei
,
P.
Deng
,
J.
Li
,
M.
Lin
,
F.
Zhu
,
T.-W.
Ng
,
C.-S.
Lee
, and
B. S.
Ong
, “
Solution-processed donor-acceptor polymer nanowire network semiconductors for high-performance field-effect transistors
,”
Sci. Rep.
6
,
24476
(
2016
).
40.
L.
Unnikrishnan
,
S.
Mohanty
, and
S. K.
Nayak
, “
Miscibility evaluation of polystyrene and poly(methyl methacrylate) blends: Analysis of mechanical, thermal, morphology, and viscoelastic properties
,”
1
, 1–2 (2015).
41.
J.
Barron
,
A.
Pickett
,
J.
Glaser
, and
S.
Guha
, “
Solution-processed organic and ZnO field-effect transistors in complementary circuits
,”
Electron. Mater.
2
,
60
71
(
2021
).
42.
M.
Zohaib
,
T.
Afzal
,
M.
Zahir Iqbal
,
B. S.
Almutairi
,
M.
Ali Raza
,
M. F.
Maqsood
,
M. A.
Raza
,
S.
Riaz
,
S.
Naseem
, and
M. J.
Iqbal
, “
Role of time-dependent foreign molecules bonding in the degradation mechanism of polymer field-effect transistors in ambient conditions
,”
R. Soc. Open Sci.
10
,
221272
(
2023
).
43.
W.
Li
,
L.
Li
,
Q.
Sun
,
X.
Liu
,
M.
Kanehara
,
T.
Nakayama
,
J.
Jiu
,
K.
Sakamoto
, and
T.
Minari
, “
Direct fabrication of high-resolution and high-performance flexible electronics via surface-activation-localized electroless plating
,”
Chem. Eng. J.
416
,
127644
(
2020
).

Supplementary Material

You do not currently have access to this content.