Energy transfer has been proven to be an effective method to optimize optoelectronic conversion efficiency by improving light absorption and mitigating nonradiative losses. We prepared 2D/3D CsPbBr3 hybrid assemblies at different reaction temperatures using the hot injection method and found that the photoluminescence quantum yields (PLQYs) of these hybrids were greatly enhanced from 53.4% to 72.57% compared with 3D nanocrystals (NCs). Femtosecond transient absorption measurements were used to study the PLQY enhancement mechanisms, and it was found that the hot carrier lifetime improved from 0.36 to 1.88 ps for 2D/3D CsPbBr3 hybrid assemblies owing to the energy transfer from 2D nanoplates to 3D NCs. The energy transfer benefits the excited carrier accumulation and prolonged hot carrier lifetime in 3D NCs in hybrid assemblies, as well as PLQY enhancement in materials.

1.
P. V.
Kamat
,
Acc. Chem. Res.
50
(
3
),
527
531
(
2017
).
2.
N. S.
Lewis
and
D. G.
Nocera
,
Proc. Natl. Acad. Sci. U. S. A.
103
(
43
),
15729
15735
(
2006
).
3.
Y.
Wang
,
H.
Suzuki
,
J.
Xie
,
O.
Tomita
,
D. J.
Martin
,
M.
Higashi
,
D.
Kong
,
R.
Abe
, and
J.
Tang
,
Chem. Rev.
118
(
10
),
5201
5241
(
2018
).
4.
S. A.
Crooker
,
J. A.
Hollingsworth
,
S.
Tretiak
, and
V. I.
Klimov
,
Phys. Rev. Lett.
89
(
18
),
186802
(
2002
).
5.
E.
Lerner
,
T.
Cordes
,
A.
Ingargiola
,
Y.
Alhadid
,
S.
Chung
,
X.
Michalet
, and
S.
Weiss
,
Science
359
(
6373
),
eaan1133
(
2018
).
6.
B.
Valeur
and
M. N.
Berberan-Santos
,
Molecular Fluorescence
(
Wiley
,
2012
).
7.
M.
Cardoso Dos Santos
,
W. R.
Algar
,
I. L.
Medintz
, and
N.
Hildebrandt
,
TrAC Trends Anal. Chem.
125
,
115819
(
2020
).
8.
J. I.
Basham
,
G. K.
Mor
, and
C. A.
Grimes
,
ACS Nano
7
(
6
),
1253
1258
(
2013
).
9.
A. A.
Mohapatra
,
V.
Kim
,
B.
Puttaraju
,
A.
Sadhanala
,
X.
Jiao
,
C. R.
McNeill
,
R. H.
Friend
, and
S.
Patil
,
ACS Appl. Energy Mater.
1
(
9
),
4874
4882
(
2018
).
10.
J.-S.
Huang
,
T.
Goh
,
X.
Li
,
M. Y.
Sfeir
,
E. A.
Bielinski
,
S.
Tomasulo
,
M. L.
Lee
,
N.
Hazari
, and
A. D.
Taylor
,
Nat. Photonics
7
(
6
),
479
485
(
2013
).
11.
F.
Lin
,
H.
Wang
,
Y.
Cao
,
R.
Yu
,
G.
Liang
,
H.
Huang
,
Y.
Mu
,
Z.
Yang
, and
Z.
Chi
,
Adv. Mater.
34
,
2108333
(
15
) (
2022
).
12.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
,
Nano Lett.
15
(
6
),
3692
3696
(
2015
).
13.
A.
Swarnkar
,
A. R.
Marshall
,
E. M.
Sanehira
,
B. D.
Chernomordik
,
D. T.
Moore
,
J. A.
Christians
,
T.
Chakrabarti
, and
J. M.
Luther
,
Science
354
(
6308
),
92
95
(
2016
).
14.
K.
Lin
,
J.
Xing
,
L. N.
Quan
,
F. P. G.
de Arquer
,
X.
Gong
,
J.
Lu
,
L.
Xie
,
W.
Zhao
,
D.
Zhang
,
C.
Yan
,
W.
Li
,
X.
Liu
,
Y.
Lu
,
J.
Kirman
,
E. H.
Sargent
,
Q.
Xiong
, and
Z.
Wei
,
Nature
562
(
7726
),
245
248
(
2018
).
15.
Y.
Wang
,
X.
Li
,
J.
Song
,
L.
Xiao
,
H.
Zeng
, and
H.
Sun
,
Adv. Mater.
27
(
44
),
7101
7108
(
2015
).
16.
P.
Ramasamy
,
D.-H.
Lim
,
B.
Kim
,
S.-H.
Lee
,
M.-S.
Lee
, and
J.-S.
Lee
,
Chem. Commun.
52
(
10
),
2067
2070
(
2016
).
17.
S.
Park
,
W. J.
Chang
,
C. W.
Lee
,
S.
Park
,
H.-Y.
Ahn
, and
K. T.
Nam
,
Nat. Energy
2
(
1
),
16185
(
2016
).
18.
L.
Janker
,
Y.
Tong
,
L.
Polavarapu
,
J.
Feldmann
,
A. S.
Urban
, and
H. J.
Krenner
,
Nano Lett.
19
(
12
),
8701
8707
(
2019
).
19.
M.
Gramlich
,
C.
Lampe
,
J.
Drewniok
, and
A. S.
Urban
,
J. Phys. Chem. Lett.
12
(
46
),
11371
11377
(
2021
).
20.
M. G.
Greiner
,
A.
Singldinger
,
N. A.
Henke
,
C.
Lampe
,
U.
Leo
,
M.
Gramlich
, and
A. S.
Urban
,
Nano Lett.
22
(
16
),
6709
6715
(
2022
).
21.
L.
Mishra
,
R. K.
Behera
,
A.
Panigrahi
, and
M. K.
Sarangi
,
J. Phys. Chem. Lett.
13
(
19
),
4357
4364
(
2022
).
22.
L. M.
Pazos-Outon
,
M.
Szumilo
,
R.
Lamboll
,
J. M.
Richter
,
M.
Crespo-Quesada
,
M.
Abdi-Jalebi
,
H. J.
Beeson
,
M.
Vrucinic
,
M.
Alsari
,
H. J.
Snaith
,
B.
Ehrler
,
R. H.
Friend
, and
F.
Deschler
,
Science
351
(
6280
),
1430
1433
(
2016
).
23.
C.
Cho
,
B.
Zhao
,
G. D.
Tainter
,
J.-Y.
Lee
,
R. H.
Friend
,
D.
Di
,
F.
Deschler
, and
N. C.
Greenham
,
Nat. Commun.
11
(
1
),
611
(
2020
).
24.
L.
Lei
,
D.
Seyitliyev
,
S.
Stuard
,
J.
Mendes
,
Q.
Dong
,
X.
Fu
,
Y. A.
Chen
,
S.
He
,
X.
Yi
,
L.
Zhu
,
C. H.
Chang
,
H.
Ade
,
K.
Gundogdu
, and
F.
So
,
Adv. Mater.
32
,
1906571
(
16
) (
2020
).
25.
S.
Huang
,
N.
Liu
,
Z.
Liu
,
Z.
Zhan
,
Z.
Hu
,
Z.
Du
,
Z.
Zhang
,
J.
Luo
,
J.
Du
,
J.
Tang
, and
Y.
Leng
,
ACS Appl. Mater. Interfaces
14
(
29
),
33842
33849
(
2022
).
26.
J. T.
DuBose
and
P. V.
Kamat
,
J. Am. Chem. Soc.
143
(
45
),
19214
19223
(
2021
).
27.
Y.
Bekenstein
,
B. A.
Koscher
,
S. W.
Eaton
,
P.
Yang
, and
A. P.
Alivisatos
,
J. Am. Chem. Soc.
137
(
51
),
16008
16011
(
2015
).
28.
Y.
Wang
,
X.
Li
,
S.
Sreejith
,
F.
Cao
,
Z.
Wang
,
M. C.
Stuparu
,
H.
Zeng
, and
H.
Sun
,
Adv. Mater.
28
(
48
),
10637
10643
(
2016
).
29.
W.
Shen
,
Y.
Yu
,
W.
Zhang
,
Y.
Chen
,
J.
Zhang
,
L.
Yang
,
J.
Feng
,
G.
Cheng
,
L.
Liu
, and
S.
Chen
,
ACS Appl. Mater. Interfaces
14
(
4
),
5682
5691
(
2022
).
30.
C.
Otero-Martínez
,
J.
Ye
,
J.
Sung
,
I.
Pastoriza-Santos
,
J.
Pérez-Juste
,
Z.
Xia
,
A.
Rao
,
R. L. Z.
Hoye
, and
L.
Polavarapu
,
Adv. Mater.
34
,
2107105
(
10
) (
2022
).
31.
Y.
Li
,
T.
Ding
,
X.
Luo
,
Y.
Tian
,
X.
Lu
, and
K.
Wu
,
Chem. Mater.
32
(
1
),
549
556
(
2019
).
32.
A.
Zhou
,
Y.
Xie
,
F.
Wang
,
R.
Liang
,
Q.
Ou
, and
S.
Zhang
,
J. Phys. Chem. Lett.
13
(
20
),
4634
4641
(
2022
).
33.
B. P.
Carwithen
,
T. R.
Hopper
,
Z.
Ge
,
N.
Mondal
,
T.
Wang
,
R.
Mazlumian
,
X.
Zheng
,
F.
Krieg
,
F.
Montanarella
,
G.
Nedelcu
,
M.
Kroll
,
M. A.
Siguan
,
J. M.
Frost
,
K.
Leo
,
Y.
Vaynzof
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
, and
A. A.
Bakulin
,
ACS Nano
17
(
7
),
6638
6648
(
2023
).
34.
J. T.
DuBose
and
P. V.
Kamat
,
Chem. Rev.
122
(
15
),
12475
12494
(
2022
).
35.
P.
Maity
,
N. A.
Merdad
,
J.
Yin
,
K. J.
Lee
,
L.
Sinatra
,
O. M.
Bakr
, and
O. F.
Mohammed
,
ACS Energy Lett.
6
(
7
),
2602
2609
(
2021
).
36.
S.
Panuganti
,
L. V.
Besteiro
,
E. S.
Vasileiadou
,
J. M.
Hoffman
,
A. O.
Govorov
,
S. K.
Gray
,
M. G.
Kanatzidis
, and
R. D.
Schaller
,
J. Am. Chem. Soc.
143
(
11
),
4244
4252
(
2021
).
37.
J.
Chakkamalayath
,
G. V.
Hartland
, and
P. V.
Kamat
,
J. Phys. Chem. C
125
(
32
),
17881
17889
(
2021
).
38.
T.
Huo
,
L.
Yan
,
J.
Si
,
P.
Ma
, and
X.
Hou
,
J. Mater. Chem. C
11
(
11
),
3736
3742
(
2023
).
39.
N.
Mondal
and
A.
Samanta
,
Nanoscale
9
(
5
),
1878
1885
(
2017
).
40.
C.
Wang
,
L.
Yan
,
J.
Si
,
T.
Huo
, and
X.
Hou
,
J. Alloys Compd.
946
,
169272
(
2023
).

Supplementary Material

You do not currently have access to this content.