The immobilization of Re(I) complexes onto metal oxide surfaces presents an elegant strategy to enhance their stability and reusability toward photocatalytic CO2 reduction. In this study, the photocatalytic performance of fac-[ClRe(CO)3(dcbH2)], where dcbH2 = 4,4′-dicarboxylic acid-2,2′-bipyridine, anchored onto the surface of 1%m/m CuO/Nb2O5 was investigated. Following adsorption, the turnover number for CO production (TONCO) in DMF/TEOA increased significantly, from ten in solution to 370 under visible light irradiation, surpassing the TONCO observed for the complex onto pristine Nb2O5 or CuO surfaces. The CuO/Nb2O5 heterostructure allows for efficient electron injection by the Re(I) center, promoting efficient charge separation. At same time CuO clusters introduce a new absorption band above 550 nm that contributes for the photoreduction of the reaction intermediates, leading to a more efficient CO evolution and minimization of side reactions.

1.
D. I.
Armstrong McKay
,
A.
Staal
,
J. F.
Abrams
,
R.
Winkelmann
,
B.
Sakschewski
,
S.
Loriani
,
I.
Fetzer
,
S. E.
Cornell
,
J.
Rockström
, and
T. M.
Lenton
, “
Exceeding 1.5 °C global warming could trigger multiple climate tipping points
,”
Science
377
,
7950
(
2022
).
2.
G.
Chen
,
G. I. N.
Waterhouse
,
R.
Shi
,
J.
Zhao
,
Z.
Li
,
L. Z.
Wu
,
C. H.
Tung
, and
T.
Zhang
, “
From solar energy to Fuels: Recent advances in light-driven C1 chemistry
,”
Angew. Chem., Int. Ed.
58
,
17528
17551
(
2019
).
3.
T.
Li
,
H.
Huang
,
S.
Wang
,
Y.
Mi
, and
Y.
Zhang
, “
Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction
,”
Nano Res.
16
,
8542
8569
(
2023
).
4.
L.
Liu
,
Y.
Zhang
, and
H.
Huang
, “
Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction
,”
Sol. RRL
5
,
1
19
(
2021
).
5.
S. F.
Sousa
,
B. L.
Souza
,
C. L.
Barros
, and
A. O. T.
Patrocinio
, “
Inorganic photochemistry and solar energy harvesting: Current developments and challenges to solar fuel production
,”
Int. J. Photoenergy
2019
,
9624092
.
6.
S. F.
Sousa
and
A. O. T.
Patrocinio
, “
Coordination chemistry and solar fuel production
,”
Quim. Nova
37
,
886
895
(
2014
).
7.
Y. S.
Zhou
,
Z. T.
Wang
,
L.
Huang
,
S.
Zaman
,
K.
Lei
,
T.
Yue
,
Z. A.
Li
,
B.
You
, and
B. Y.
Xia
, “
Engineering 2D photocatalysts toward carbon dioxide reduction
,”
Adv. Energy Mater.
11
,
19
(
2021
).
8.
T. P.
Nguyen
,
D. L. T.
Nguyen
,
V. H.
Nguyen
,
T. H.
Le
,
D. V. N.
Vo
,
Q. T.
Trinh
,
S. R.
Bae
,
S. Y.
Chae
,
S. Y.
Kim
, and
Q. V.
Le
, “
Recent advances in TiO2-based photocatalysts for reduction of CO2 to Fuels
,”
Nanomaterials
10
,
337
(
2020
).
9.
L. A.
Faustino
,
A. E. H.
Machado
,
P. I. S.
Maia
,
J. J.
Concepcion
, and
A. O. T.
Patrocinio
, “
Electrocatalytic properties of a novel ruthenium(ii) terpyridine-based complex towards CO2 reduction
,”
Dalton Trans.
52
,
4442
4455
(
2023
).
10.
M. E. G.
Carmo
,
L.
Spies
,
G. N.
Silva
,
O. F.
Lopes
,
T.
Bein
,
J.
Schneider
, and
A. O. T.
Patrocinio
, “
From conventional inorganic semiconductors to covalent organic frameworks: Advances and opportunities in heterogeneous photocatalytic CO2 reduction
,”
J. Mater. Chem. A
11
,
13815
13843
(
2023
).
11.
G.
Yang
,
G. E.
Shillito
,
C.
Zens
,
B.
Dietzek-Ivanšić
, and
S.
Kupfer
, “
The three kingdoms—photoinduced electron transfer cascades controlled by electronic couplings
,”
J. Chem. Phys.
159
,
024109
(
2023
).
12.
Y.
Kuramochi
,
K.
Fukaya
,
M.
Yoshida
, and
H.
Ishida
, “
Trans-(Cl)-[Ru(5,5′-diamide-2,2′-bipyridine)(CO)2Cl2]: Synthesis, structure, and photocatalytic CO2 reduction activity
,”
Chem. - Eur. J.
21
,
10049
10060
(
2015
).
13.
M.
Sun
,
C.
Wang
,
C. Y.
Sun
,
M.
Zhang
,
X. L.
Wang
, and
Z. M.
Su
, “
Ultra stable multinuclear metal complexes as homogeneous catalysts for visible-light driven syngas production from pure and diluted CO2
,”
J. Catal.
385
,
70
75
(
2020
).
14.
F.
Wang
,
R.
Neumann
,
C.
de Graaf
, and
J. M.
Poblet
, “
Photoreduction mechanism of CO2 to CO catalyzed by a three-component hybrid construct with a bimetallic rhenium catalyst
,”
ACS Catal.
11
,
1495
1504
(
2021
).
15.
A. V.
Müller
,
L. A.
Faustino
,
K. T.
De Oliveira
,
A. O. T.
Patrocinio
, and
A. S.
Polo
, “
Visible-light-driven photocatalytic CO2Reduction by Re(I) photocatalysts with N-heterocyclic substituents
,”
ACS Catal.
13
,
633
646
(
2023
).
16.
C.
Cometto
,
L.
Chen
,
D.
Mendoza
,
B.
Lassalle-Kaiser
,
T. C.
Lau
, and
M.
Robert
, “
An iron quaterpyridine complex as precursor for the electrocatalytic reduction of CO2 to methane
,”
ChemSusChem
12
,
4500
4505
(
2019
).
17.
X.
Liu
,
C.
Liu
,
X.
Song
,
X.
Ding
,
H.
Wang
,
B.
Yu
,
H.
Liu
,
B.
Han
,
X.
Li
, and
J.
Jiang
, “
Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO2 reduction electrocatalytic properties
,”
Chem. Sci.
14
,
9086
9094
(
2023
).
18.
Y.
Kuramochi
and
A.
Satake
, “
Photocatalytic CO2 reductions catalyzed by meso-(1,10-phenanthrolin-2-yl)-porphyrins having a rhenium(I) tricarbonyl complex
,”
Chem. - Eur. J.
26
,
16365
16373
(
2020
).
19.
J.
Shipp
,
S.
Parker
,
S.
Spall
,
S. L.
Peralta-Arriaga
,
C. C.
Robertson
,
D.
Chekulaev
,
P.
Portius
,
S.
Turega
,
A.
Buckley
,
R.
Rothman
, and
J. A.
Weinstein
, “
Photocatalytic reduction of CO2 to CO in aqueous solution under red-light irradiation by a Zn-porphyrin-sensitized Mn(I) catalyst
,”
Inorg. Chem.
61
,
13281
13292
(
2022
).
20.
H.
Shirley
,
T. M.
Sexton
,
N. P.
Liyanage
,
C. Z.
Palmer
,
L. E.
McNamara
,
N. I.
Hammer
,
G. S.
Tschumper
, and
J. H.
Delcamp
, “
Effect of “X” ligands on the photocatalytic reduction of CO2 to CO with Re(pyridylNHC-CF3)(CO)3X complexes
,”
Eur. J. Inorg. Chem.
2020
,
1844
1851
.
21.
T.
Morikawa
,
S.
Sato
,
K.
Sekizawa
,
T. M.
Suzuki
, and
T.
Arai
, “
Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: From photocatalysts to a monolithic artificial leaf
,”
Acc. Chem. Res.
55
,
933
943
(
2022
).
22.
L. X.
Chen
,
Y. Y.
Wu
,
Y. F.
Hu
, and
D. B.
Chao
, “
A simple terpyridine-cobalt(II) complex sensitized by connective mpg-C3N4 for improved CO2 photoreduction
,”
J. CO2 Util.
62
,
102083
(
2022
).
23.
C. D.
Windle
,
E.
Pastor
,
A.
Reynal
,
A. C.
Whitwood
,
Y.
Vaynzof
,
J. R.
Durrant
,
R. N.
Perutz
, and
E.
Reisner
, “
Improving the photocatalytic reduction of CO2 to CO through immobilisation of a molecular Re catalyst on TiO2
,”
Chem. - Eur. J.
21
,
3746
3754
(
2015
).
24.
L. A.
Faustino
,
B. L.
Souza
,
B. N.
Nunes
,
A. T.
Duong
,
F.
Sieland
,
D. W.
Bahnemann
, and
A. O. T.
Patrocinio
, “
Photocatalytic CO2 reduction by Re(I) polypyridyl complexes immobilized on niobates nanoscrolls
,”
ACS Sustainable Chem. Eng.
6
,
6073
6083
(
2018
).
25.
M.
Shizuno
,
K.
Kato
,
S.
Nishioka
,
T.
Kanazawa
,
D.
Saito
,
S.
Nozawa
,
A.
Yamakata
,
O.
Ishitani
, and
K.
Maeda
, “
Effects of a nanoparticulate TiO2 modifier on the visible-light CO2 reduction performance of a metal-complex/semiconductor hybrid photocatalyst
,”
ACS Appl. Energy Mater.
5
,
9479
9486
(
2022
).
26.
A. O. T.
Patrocinio
,
K. P. M.
Frin
, and
N. Y.
Murakami Iha
, “
Solid state molecular device based on a rhenium(I) polypyridyl complex immobilized on TiO2 films
,”
Inorg. Chem.
52
,
5889
5896
(
2013
).
27.
O. F.
Lopes
,
E. C.
Paris
, and
C.
Ribeiro
, “
Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study
,”
Appl. Catal., B
144
,
800
808
(
2014
).
28.
A. E.
Nogueira
,
O. F.
Lopes
,
A. B. S.
Neto
, and
C.
Ribeiro
, “
Enhanced Cr(VI) photoreduction in aqueous solution using Nb2O5/CuO heterostructures under UV and visible irradiation
,”
Chem. Eng. J.
312
,
220
227
(
2017
).
29.
M. K.
Brennaman
,
A. O. T.
Patrocinio
,
W. J.
Song
,
J. W.
Jurss
,
J. J.
Concepcion
,
P. G.
Hoertz
,
M. C.
Traub
,
N. Y.
Murakami Iha
, and
T. J.
Meyer
, “
Interfacial electron transfer dynamics following laser flash photolysis of Ru(bpy)2((4,4′-PO3H2)2bpy)2+ in TiO2 nanoparticle films in aqueous environments
,”
ChemSusChem
4
,
216
227
(
2011
).
30.
A. L. A.
Faria
,
H. A.
Centurion
,
J. A.
Torres
,
R. V.
Gonçalves
,
L. S.
Ribeiro
,
C.
Riberio
,
J. C.
da Cruz
, and
F. G. E.
Nogueira
, “
Enhancing Nb2O5 activity for CO2 photoreduction through Cu nanoparticles cocatalyst deposited by DC-magnetron sputtering
,”
J. CO2 Util.
53
,
101739
(
2021
).
31.
C.
Nico
,
T.
Monteiro
, and
M. P. F.
Graça
, “
Niobium oxides and niobates physical properties: Review and prospects
,”
Prog. Mater. Sci.
80
,
1
37
(
2016
).
32.
S. M. A. H.
Siddiki
,
M. N.
Rashed
,
M. A.
Ali
,
T.
Toyao
,
P.
Hirunsit
,
M.
Ehara
, and
K. i.
Shimizu
, “
Lewis acid catalysis of Nb2O5 for reactions of carboxylic acid derivatives in the presence of basic inhibitors
,”
ChemCatChem
11
,
383
396
(
2019
).
33.
G. T.
da Silva
,
A. E.
Nogueira
,
J. A.
Oliveira
,
J. A.
Torres
,
O. F.
Lopes
, and
C.
Ribeiro
, “
Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction
,”
Appl. Catal., B
242
,
349
357
(
2019
).
34.
M.
Luisa Marin
,
G. L.
Hallett-Tapley
,
S.
Impellizzeri
,
C.
Fasciani
,
S.
Simoncelli
,
J. C.
Netto-Ferreira
, and
J. C.
Scaiano
, “
Synthesis, acid properties and catalysis by niobium oxide nanostructured materials
,”
Catal. Sci. Technol.
4
,
3044
3052
(
2014
).
35.
V. V.
Atuchin
,
I. E.
Kalabin
,
V. G.
Kesler
, and
N. V.
Pervukhina
, “
Nb 3d and O 1s core levels and chemical bonding in niobates
,”
J. Electron Spectrosc. Relat. Phenom.
142
,
129
134
(
2005
).
36.
B.
Nascimento Nunes
,
D. W.
Bahnemann
, and
A.
Otavio T Patrocinio
, “
Efficient photocatalytic H2 evolution by hexaniobate nanosheets grafted with copper nanoclusters
,”
ChemPhotoChem
6
,
9
(
2022
).
37.
H.
Irie
,
K.
Kamiya
,
T.
Shibanuma
,
S.
Miura
,
D. A.
Tryk
,
T.
Yokoyama
, and
K.
Hashimoto
, “
Visible light-sensitive Cu(II)-Grafted TiO2 photocatalysts: Activities and X-ray absorption fine structure analyses
,”
J. Phys. Chem. C
113
,
10761
10766
(
2009
).
38.
H.
Tian
,
X. L.
Zhang
,
J.
Scott
,
C.
Ng
, and
R.
Amal
, “
TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production
,”
J. Mater. Chem. A
2
,
6432
6438
(
2014
).
39.
M.
Mousavi-Kamazani
,
R.
Rahmatolahzadeh
, and
F.
Beshkar
, “
Facile solvothermal synthesis of CeO2–CuO nanocomposite photocatalyst using novel precursors with enhanced photocatalytic performance in dye degradation
,”
J. Inorg. Organomet. Polym. Mater.
27
,
1342
1350
(
2017
).
40.
L.
Xu
,
G.
Zheng
,
S.
Pei
, and
J.
Wang
, “
Investigation of optical bandgap variation and photoluminescence behavior in nanocrystalline CuO thin films
,”
Optik
158
,
382
390
(
2018
).
41.
F.
Wu
,
H.
Zhang
,
W.
Lu
, and
X.
Li
, “
Synthesis of ZnO/CuO composite coaxial nanoarrays by combined hydrothermal-solvothermal method and potential for solar cells
,”
J. Compos. Mater.
49
,
2009
2014
(
2015
).
42.
D. I.
Won
,
J. S.
Lee
,
J. M.
Ji
,
W. J.
Jung
,
H. J.
Son
,
C.
Pac
, and
S. O.
Kang
, “
Highly robust hybrid photocatalyst for carbon dioxide reduction: Tuning and optimization of catalytic activities of dye/TiO2/Re(I) organic-inorganic ternary systems
,”
J. Am. Chem. Soc.
137
,
13679
13690
(
2015
).
43.
K.
Hojo
,
S.
Nishioka
,
Y.
Miseki
,
Y.
Kamakura
,
T.
Oshima
,
K.
Sayama
,
T. E.
Mallouk
, and
K.
Maeda
, “
An improved Z-scheme for overall water splitting using dye-sensitized calcium niobate nanosheets synthesized by a flux method
,”
ACS Appl. Energy Mater.
4
,
10145
10152
(
2021
).
44.
K.
Maeda
,
M.
Eguchi
,
S. H. A.
Lee
,
W. J.
Youngblood
,
H.
Hata
, and
T. E.
Mallouk
, “
Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium(II) bipyridyl complexes
,”
J. Phys. Chem. C
113
,
7962
7969
(
2009
).
45.
G. G.
Lara
,
G. F.
Andrade
,
M. F.
Cipreste
,
W. M.
da Silva
,
P. L.
Gastelois
,
D. A.
Gomes
,
M. C.
de Miranda
,
W. A.
de Almeida Macedo
,
M. J.
Neves
, and
E. M. B.
de Sousa
, “
Protection of normal cells from irradiation bystander effects by silica-flufenamic acid nanoparticles
,”
J. Mater. Sci.: Mater. Med.
29
,
130
(
2018
).
46.
A.
Dolgov
,
D.
Lopaev
,
C. J.
Lee
,
E.
Zoethout
,
V.
Medvedev
,
O.
Yakushev
, and
F.
Bijkerk
, “
Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source
,”
Appl. Surf. Sci.
353
,
708
713
(
2015
).
47.
Y.
Kuramochi
,
O.
Ishitani
, and
H.
Ishida
, “
Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes
,”
Coord. Chem. Rev.
373
,
333
356
(
2018
).
48.
Y.
Yamazaki
,
H.
Takeda
, and
O.
Ishitani
, “
Photocatalytic reduction of CO2 using metal complexes
,”
J. Photochem. Photobiol., C
25
,
106
137
(
2015
).
49.
T.
Morimoto
,
T.
Nakajima
,
S.
Sawa
,
R.
Nakanishi
,
D.
Imori
, and
O.
Ishitani
, “
CO2 capture by a rhenium(I) complex with the aid of triethanolamine
,”
J. Am. Chem. Soc.
135
,
16825
16828
(
2013
).
50.
C. W.
Machan
,
M. D.
Sampson
,
S. A.
Chabolla
,
T.
Dang
, and
C. P.
Kubiak
, “
Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry
,”
Organometallics
33
,
4550
4559
(
2014
).
51.
J. M.
Smieja
and
C. P.
Kubiak
, “
Re(bipy-tBu)(CO)3Cl improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies
,”
Inorg. Chem.
49
,
9283
9289
(
2010
).
52.
M.
Abdellah
,
A. M.
El-Zohry
,
L. J.
Antila
,
C. D.
Windle
,
E.
Reisner
, and
L.
Hammarström
, “
Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2–Re catalyst system for CO2 photoreduction
,”
J. Am. Chem. Soc.
139
,
1226
1232
(
2017
).
53.
A. E.
Nogueira
,
G. T. S. T.
Silva
,
J. A.
Oliveira
,
O. F.
Lopes
,
J. A.
Torres
,
M.
Carmo
, and
C.
Ribeiro
, “
CuO decoration controls Nb2O5 photocatalyst selectivity in CO2 reduction
,”
ACS Appl. Energy Mater.
3
,
7629
7636
(
2020
).

Supplementary Material

You do not currently have access to this content.