In this work, we demonstrate how the ion association constant can be attributed to the difference between the full Poisson–Boltzmann equation and its linearized version in very dilute solutions. We follow a pragmatic approach first by deriving an analytical approximated solution to the Poisson–Boltzmann equation, then calculating its respective Helmholtz free energy and activity coefficient, and then finally comparing it to the contribution from the mass action law principle. The final result is the Ebeling association constant. We conclude that electrostatic ion–ion interaction models miss the ion association contribution naturally introduced in higher-order electrostatic theories. We also demonstrate how the negative deviations from the Debye–Hückel limiting law can be physically attributed to the ion association phenomenon.

1.
N.
Bierrum
, “
Die dissoziation der starken elektrolyte
,”
Z. Elektrochem. Angew. Phys. Chem.
24
,
321
328
(
1918
).
2.
P.
Debye
and
E.
Hückel
, “
Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen
,”
Phys. Z.
24
,
185
206
(
1923
).
3.
D.
Henderson
,
M.
Holovko
, and
A.
Trokhymchuk
, “
Ionic soft matter: Modern trends in theory and applications
,” in
Proceedings of the NATO Advanced Research Workshop on Ionic Soft Matter: Modern Trends in Theory and Application
,
Lviv, Ukraine
,
14–17 April 2004
.
4.
R. M.
Fuoss
, “
Ionic association. III. The equilibrium between ion pairs and free ions
,”
J. Am. Chem. Soc.
80
,
5059
5061
(
1958
).
5.
W.
Ebeling
, “
Zur theorie der bjerrumschen ionenassoziation in elektrolyten
,”
Z. Phys. Chem.
238O
,
400
402
(
1968
).
6.
Y.
Marcus
and
G.
Hefter
, “
Ion pairing
,”
Chem. Rev.
106
,
4585
4621
(
2006
).
7.
M.
Holovko
and
Y. V.
Kalyuzhnyi
, “
On the effects of association in the statistical theory of ionic systems. Analytic solution of the PY-MSA version of the Wertheim theory
,”
Mol. Phys.
73
,
1145
1157
(
1991
).
8.
J.
Barthel
,
H.
Krienke
,
M.
Holovko
,
V.
Kapko
, and
I.
Protsykevich
, “
The application of the associative mean spherical approximation in the theory of nonaqueous electrolyte solutions
,”
Condens. Matter Phys.
3
,
657
674
(
2000
).
9.
J.
Barthel
,
H.
Krienke
,
R.
Neueder
, and
M.
Holovko
, “
The role of ion-aggregate formation in the calculation of physical properties of electrolyte solutions
,”
Fluid Phase Equilib.
194–197
,
107
122
(
2002
).
10.
H.
Krienke
,
J.
Barthel
,
M.
Holovko
,
I.
Protsykevich
, and
Y.
Kalyushnyi
, “
Osmotic and activity coefficients of strongly associated electrolytes over large concentration ranges from chemical model calculations
,”
J. Mol. Liq.
87
,
191
216
(
2000
).
11.
O.
Bernard
and
L.
Blum
, “
Binding mean spherical approximation for pairing ions: An exponential approximation and thermodynamics
,”
J. Chem. Phys.
104
,
4746
4754
(
1996
).
12.
L.
Blum
and
O.
Bernard
, “
The general solution of the binding mean spherical approximation for pairing ions
,”
J. Stat. Phys.
79
,
569
583
(
1995
).
13.
W.
Ebeling
and
M.
Grigo
, “
An analytical calculation of the equation of state and the critical point in a dense classical fluid of charged hard spheres
,”
Ann. Phys.
492
,
21
30
(
1980
).
14.
M. E.
Fisher
and
Y.
Levin
, “
Criticality in ionic fluids: Debye-Hückel theory, Bjerrum, and beyond
,”
Phys. Rev. Lett.
71
,
3826
(
1993
).
15.
Y.
Levin
and
M. E.
Fisher
, “
Criticality in the hard-sphere ionic fluid
,”
Physica A
225
,
164
220
(
1996
).
16.
M.
Bülow
,
M.
Ascani
, and
C.
Held
, “
ePC-SAFT advanced–Part I: Physical meaning of including a concentration-dependent dielectric constant in the born term and in the Debye-Hückel theory
,”
Fluid Phase Equilib.
535
,
112967
(
2021
).
17.
S.
Müller
,
A.
González de Castilla
,
C.
Taeschler
,
A.
Klein
, and
I.
Smirnova
, “
Calculation of thermodynamic equilibria with the predictive electrolyte model COSMO-RS-ES: Improvements for low permittivity systems
,”
Fluid Phase Equilib.
506
,
112368
(
2020
).
18.
Y.-J.
Lin
,
C.-J.
Hsieh
, and
C.-C.
Chen
, “
Association-based activity coefficient model for electrolyte solutions
,”
AIChE J.
68
,
e17422
(
2022
).
19.
J.
Rozmus
,
J.-C.
de Hemptinne
,
A.
Galindo
,
S.
Dufal
, and
P.
Mougin
, “
Modeling of strong electrolytes with ePPC-SAFT up to high temperatures
,”
Ind. Eng. Chem. Res.
52
,
9979
9994
(
2013
).
20.
Z.
Liu
,
W.
Wang
, and
Y.
Li
, “
An equation of state for electrolyte solutions by a combination of low-density expansion of non-primitive mean spherical approximation and statistical associating fluid theory
,”
Fluid Phase Equilib.
227
,
147
156
(
2005
).
21.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations
,”
J. Stat. Phys.
35
,
35
47
(
1984
).
22.
M.
Wertheim
, “
Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments
,”
J. Chem. Phys.
55
,
4291
4298
(
1971
).
23.
M.
Wertheim
, “
Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres
,”
J. Chem. Phys.
85
,
2929
2936
(
1986
).
24.
M.
Wertheim
, “
Fluids with highly directional attractive forces. III. Multiple attraction sites
,”
J. Stat. Phys.
42
,
459
476
(
1986
).
25.
M.
Wertheim
, “
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
,”
J. Stat. Phys.
42
,
477
492
(
1986
).
26.
E.
Guggenheim
, “
Ion distribution in dilute aqueous solutions of single binary electrolytes
,”
Discuss. Faraday Soc.
24
,
53
65
(
1957
).
27.
E.
Guggenheim
, “
The accurate numerical solution of the Poisson-Boltzmann equation
,”
Trans. Faraday Soc.
55
,
1714
1724
(
1959
).
28.
E.
Guggenheim
, “
Activity coefficients and osmotic coefficients of 2:2 electrolytes
,”
Trans. Faraday Soc.
56
,
1152
1158
(
1960
).
29.
E.
Guggenheim
, “
Activity coefficients of 2:1 electrolytes
,”
Trans. Faraday Soc.
58
,
86
87
(
1962
).
30.
A.
Gardner
and
E.
Glueckauf
, “
The activity coefficients of electrolytes with particular reference to aqueous mixtures of 2:2 with 1:1 electrolytes
,”
Proc. R. Soc. London, Ser. A
321
,
515
543
(
1971
).
31.
E.
Glueckauf
, “
Further studies of 2:2 electrolytes: Osmotic and activity coefficients
,”
Proc. R. Soc. London, Ser. A
351
,
471
479
(
1976
).
32.
H.
Müller
, “
Die aktivitätskoeffizienten kleiner ionen
,”
Phys. Z.
28
,
324
333
(
1927
).
33.
H.
Yokoyama
and
H.
Yamatera
, “
A refined Debye-Hückel theory and ion association
,”
Chem. Lett.
2
,
337
342
(
1973
).
34.
H.
Yokoyama
and
H.
Yamatera
, “
A theory of ion association as a complement of the Debye-Hückel theory
,”
Bull. Chem. Soc. Jpn.
48
,
1770
1776
(
1975
).
35.
G. M.
Silva
,
X.
Liang
, and
G. M.
Kontogeorgis
, “
Investigation of the limits of the linearized Poisson–Boltzmann equation
,”
J. Phys. Chem. B
126
,
4112
4131
(
2022
).
36.
F.
Malatesta
, “
The activity coefficients of high-charge electrolytes in aqueous dilute solutions
,”
J. Solution Chem.
49
,
1536
1551
(
2020
).
37.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
, 2nd revised edition (
Dover Publications
,
Mineola, NY
,
2002
).
38.
S. P.
Porras
,
M.-L.
Riekkola
, and
E.
Kenndler
, “
The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents
,”
Electrophoresis
24
,
1485
1498
(
2003
).
39.
J. M.
Barthel
,
H.
Krienke
, and
W.
Kunz
,
Physical Chemistry of Electrolyte Solutions: Modern Aspects
(
Springer Science & Business Media
,
1998
), Vol.
5
.
40.
S.
Naseri Boroujeni
,
B.
Maribo-Mogensen
,
X.
Liang
, and
G. M.
Kontogeorgis
, “
Mean ionic activity coefficient of associative electrolyte solutions: A comparison study
,”
J. Mol. Liq.
386
,
122509
(
2023
).
41.
M.
Holovko
,
T.
Patsahan
, and
O.
Patsahan
, “
Application of the ionic association concept to the study of the phase behaviour of size-asymmetric ionic fluids in disordered porous media
,”
J. Mol. Liq.
235
,
53
59
(
2017
).
42.
G. M.
Silva
,
X.
Liang
, and
G. M.
Kontogeorgis
, “
The connection between the Debye and Güntelberg charging processes and the importance of relative permittivity: The ionic cloud charging process
,”
J. Chem. Eng. Data
(published online) (
2023
).
43.
G. M.
Kontogeorgis
,
B.
Maribo-Mogensen
, and
K.
Thomsen
, “
The Debye-Hückel theory and its importance in modeling electrolyte solutions
,”
Fluid Phase Equilib.
462
,
130
152
(
2018
).
44.
J. O.
Bockris
and
A. K. N.
Reddy
,
Volume I: Modern Electrochemistry: Ionics
, 2nd ed. (
Kluwer Academic Publishers
,
New York
,
2002
).
45.
L.
Blum
, “
Solution of a model for the solvent-electrolyte interactions in the mean spherical approximation
,”
J. Chem. Phys.
61
,
2129
2133
(
1974
).
46.
L.
Blum
, “
Mean spherical model for asymmetric electrolytes. I. Method of solution
,”
Mol. Phys.
30
,
1529
1535
(
1975
).
47.
O.
Bernard
, “
Association in electrolyte solution: Implementing inner sphere ion pairing into the mean spherical approximation
,”
J. Mol. Liq.
390
,
123023
(
2023
).
48.
M.
Holovko
, “
Association and clusterization in liquids and solutions. A multidensity integral equation approach
,”
J. Mol. Liq.
96–97
,
65
85
(
2002
).
49.
Y.
Zhou
,
S.
Yeh
, and
G.
Stell
, “
Criticality of charged systems. I. The restricted primitive model
,”
J. Chem. Phys.
102
,
5785
5795
(
1995
).
50.
Y.
Zhou
and
G.
Stell
, “
Criticality of charged systems. II. The binary mixture of hard spheres and ions
,”
J. Chem. Phys.
102
,
5796
5802
(
1995
).
51.
G.
Stell
and
Y.
Zhou
, “
Chemical association in simple models of molecular and ionic fluids
,”
J. Chem. Phys.
91
,
3618
3623
(
1989
).
52.
W.
Ebeling
and
G.
Kelbg
, “
Zur statistischen thermodynamik elektrolytischer lösungen mit großem Bjerrum-parameter
,”
Z. Phys. Chem.
233O
,
209
230
(
1966
).
53.
W.
Ebeling
and
M.
Grigo
, “
Mean spherical approximation-mass action law theory of equilibrium and conductance in ionic solutions
,”
J. Solution Chem.
11
,
151
167
(
1982
).
54.
R. D.
Shannon
and
C. T.
Prewitt
, “
Effective ionic radii in oxides and fluorides
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
25
,
925
946
(
1969
).
55.
R. D.
Shannon
, “
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
,”
Acta Crystallogr., Sect. A: Found. Adv.
32
,
751
767
(
1976
).
56.
W.
Ebeling
,
S.
Hilbert
, and
H.
Krienke
, “
On Bjerrum’s mass action law for electrolytes and Onsager’s bookkeeping rule
,”
J. Mol. Liq.
96–97
,
409
423
(
2002
).
57.
R. M.
Fuoss
and
C. A.
Kraus
, “
Properties of electrolytic solutions. IV. The conductance minimum and the formation of triple ions due to the action of Coulomb forces
,”
J. Am. Chem. Soc.
55
,
2387
2399
(
1933
).
58.
R.
Heyrovská
, “
Degrees of dissociation and hydration numbers of alkali halides in aqueous solutions at 25 °C (some up to saturation)
,”
Croat. Chem. Acta
70
,
39
54
(
1997
).
59.
R.
Heyrovská
, “
Mean distance of closest approach of ions in NaCl (aq.) at 25°C calculated from degrees of association using Bjerrum’s theory
,”
Curr. Sci.
76
,
179
182
(
1999
).
60.
R.
Heyrovská
, “
Ionic concentrations and hydration numbers of ‘supporting electrolytes
,’”
Electroanalysis
18
,
351
361
(
2006
).
61.
O.
Nordness
,
L. D.
Simoni
,
M. A.
Stadtherr
, and
J. F.
Brennecke
, “
Characterization of aqueous 1-ethyl-3-methylimidazolium ionic liquids for calculation of ion dissociation
,”
J. Phys. Chem. B
123
,
1348
1358
(
2019
).
62.
S.
Lamperski
, “
The individual and mean activity coefficients of an electrolyte from the inverse GCMC simulation
,”
Mol. Simul.
33
,
1193
1198
(
2007
).
63.
J. P.
Valleau
and
L. K.
Cohen
, “
Primitive model electrolytes. I. Grand canonical Monte Carlo computations
,”
J. Chem. Phys.
72
,
5935
5941
(
1980
).
64.
T.
Boublík
, “
Hard-sphere equation of state
,”
J. Chem. Phys.
53
,
471
472
(
1970
).
65.
G.
Mansoori
,
N. F.
Carnahan
,
K.
Starling
, and
T.
Leland
, Jr.
, “
Equilibrium thermodynamic properties of the mixture of hard spheres
,”
J. Chem. Phys.
54
,
1523
1525
(
1971
).
66.
R.
Diamond
, “
The aqueous solution behavior of large univalent ions. A new type of ion-pairing
,”
J. Phys. Chem.
67
,
2513
2517
(
1963
).
67.
S.
Petrucci
,
Ionic Interactions: From Dilute Solution to Fused Salts
(
Elsevier
,
2012
), Vol.
22
.
68.
T. S.
Sørensen
,
P.
Sloth
,
H. B.
Nielsen
,
J.
Jensen
et al, “
On the validity of the Debye-Hückel laws for dilute electrolyte solutions tested by high-precision Monte Carlo simulations. Towards a rational thermodynamics. V
,”
Acta Chem. Scand., Ser. A
42
,
237
253
(
1988
).
69.
T. S.
Sørensen
, “
High precision canonical ensemble Monte Carlo simulations of very dilute, primitive Z:Z and 2:1 electrolytes and of moderately concentrated 1:1 electrolyte mixtures
,”
Mol. Simul.
11
,
1
65
(
1993
).
70.
D.
Fraenkel
, “
Negative deviations from the Debye–Hückel limiting law for high-charge polyvalent electrolytes: Are they real?
,”
J. Chem. Theory Comput.
14
,
2609
2620
(
2018
).
71.
C. W.
Outhwaite
and
L. B.
Bhuiyan
, “
An improved modified Poisson–Boltzmann equation in electric-double-layer theory
,”
J. Chem. Soc., Faraday Trans. 2
79
,
707
718
(
1983
).
72.
C. W.
Outhwaite
,
M.
Molero
, and
L. B.
Bhuiyan
, “
Symmetrical Poisson–Boltzmann and modified Poisson–Boltzmann theories
,”
J. Chem. Soc., Faraday Trans.
87
,
3227
3230
(
1991
).
73.
C. W.
Outhwaite
,
M.
Molero
, and
L. B.
Bhuiyan
, “
Primitive model electrolytes in the modified Poisson–Boltzmann theory
,”
J. Chem. Soc., Faraday Trans.
89
,
1315
1320
(
1993
).
74.
J. G.
Kirkwood
, “
On the theory of strong electrolyte solutions
,”
J. Chem. Phys.
2
,
767
781
(
1934
).
75.
T.
Gronwall
and
V. K.
Lamer
, “
On the extension of the Debye-Hückel theory of strong electrolytes to concentrated solutions
,”
Science
64
,
122
(
1926
).
76.
T.
Gronwall
, “
On the determination of the apparent diameters of the ions in the Debye-Hückel theory of strong electrolytes
,”
Proc. Natl. Acad. Sci. U. S. A.
13
,
198
(
1927
).

Supplementary Material

You do not currently have access to this content.