The nonequilibrium Fermi’s golden rule (NE-FGR) approach is developed to simulate the electronic transitions between multiple excited states in complex condensed-phase systems described by the recently proposed multi-state harmonic (MSH) model Hamiltonian. The MSH models were constructed to faithfully capture the photoinduced charge transfer dynamics in a prototypical organic photovoltaic carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran. A general expression of the fully quantum-mechanical NE-FGR rate coefficients for transitions between all pairs of states in the MSH model is obtained. Besides, the linearized semiclassical NE-FGR formula and a series of semiclassical approximations featuring Wigner and classical nuclear sampling choices and different dynamics during the quantum coherence period for the MSH model are derived. The current approach enables all the possible population transfer pathways between the excited states of the triad, in contrast to the previous applications that only addressed the donor-to-acceptor transition. Our simulations for two triad conformations serve as a demonstration for benchmarking different NE-FGR approximations and show that the difference between all levels of approximation is small for the current system, especially at room temperature. By comparing with nonadiabatic semiclassical dynamics, we observe similar timescales for the electronic population transfer predicted by NE-FGR. It is believed that the general formulation of NE-FGR for the MSH Hamiltonian enables a variety of applications in realistic systems.

1.
S. J.
Jang
,
Dynamics of Molecular Excitons: Theories and Applications
(
Elsevier
,
Amsterdam
,
2020
).
2.
S. J.
Jang
and
B.
Mennucci
, “
Delocalized excitons in natural light-harvesting complexes
,”
Rev. Mod. Phys.
90
,
035003
(
2018
).
3.
S. J.
Jang
, “
Partially polaron-transformed quantum master equation for exciton and charge transport dynamics
,”
J. Chem. Phys.
157
,
104107
(
2022
).
4.
S. J.
Jang
and
Y. M.
Rhee
, “
Modified Fermi’s golden rule rate expressions
,”
J. Chem. Phys.
159
,
014101
(
2023
).
5.
S.
Jang
,
Y.
Jung
, and
R. J.
Silbey
, “
Nonequilibrium generalization of Förster-Dexter theory for excitation energy transfer
,”
Chem. Phys.
275
,
319
332
(
2002
).
6.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
Weinheim
,
2011
).
7.
D.
Wang
,
O. C.
Fiebig
,
D.
Harris
,
H.
Toporik
,
Y.
Ji
,
C.
Chuang
,
M.
Nairat
,
A. L.
Tong
,
J. I.
Ogren
,
S. M.
Hart
,
J.
Cao
,
J. N.
Sturgis
,
Y.
Mazor
, and
G. S.
Schlau-Cohen
, “
Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2220477120
(
2023
).
8.
E.
Palacino-González
and
T. L. C.
Jansen
, “
Modeling the effect of disorder in the two-dimensional electronic spectroscopy of poly-3-hexyltiophene in an organic photovoltaic blend: A combined quantum/classical approach
,”
J. Phys. Chem. C
127
,
6793
6801
(
2023
).
9.
J.
Wang
,
Y.
Cui
,
Z.
Chen
,
J.
Zhang
,
Y.
Xiao
,
T.
Zhang
,
W.
Wang
,
Y.
Xu
,
N.
Yang
,
H.
Yao
,
X.-T.
Hao
,
Z.
Wei
, and
J.
Hou
, “
A wide bandgap acceptor with large dielectric constant and high electrostatic potential values for efficient organic photovoltaic cells
,”
J. Am. Chem. Soc.
145
,
13686
13695
(
2023
).
10.
G.
Han
,
Y.
Zhang
,
W.
Zheng
, and
Y.
Yi
, “
Electron transport in organic photovoltaic acceptor materials: Improving the carrier mobilities by intramolecular and intermolecular modulations
,”
J. Phys. Chem. Lett.
14
,
4497
4503
(
2023
).
11.
T.
Wang
,
Z.-H.
Chen
,
J.-W.
Qiao
,
W.
Qin
,
J.-Q.
Liu
,
X.-Z.
Wang
,
Y.-J.
Pu
,
H.
Yin
, and
X.-T.
Hao
, “
Correlating charge transfer dynamics with interfacial trap states in high-efficiency organic solar cells
,”
ACS Appl. Mater. Interfaces
15
,
12109
12118
(
2023
).
12.
Q.
Li
,
R.
Wang
, and
C.
Zhang
, “
The dynamics of delocalized excitations in organic solar cells with nonfullerene acceptors
,”
J. Phys. Chem. Lett.
14
,
3031
3038
(
2023
).
13.
P. P.
Roy
,
S.
Kundu
,
J.
Valdiviezo
,
G.
Bullard
,
J. T.
Fletcher
,
R.
Liu
,
S.-J.
Yang
,
P.
Zhang
,
D. N.
Beratan
,
M. J.
Therien
,
N.
Makri
, and
G. R.
Fleming
, “
Synthetic control of exciton dynamics in bioinspired cofacial porphyrin dimers
,”
J. Am. Chem. Soc.
144
,
6298
6310
(
2022
).
14.
G.
Zhang
,
F. R.
Lin
,
F.
Qi
,
T.
Heumüller
,
A.
Distler
,
H.-J.
Egelhaaf
,
N.
Li
,
P. C. Y.
Chow
,
C. J.
Brabec
,
A. K.-Y.
Jen
, and
H.-L.
Yip
, “
Renewed prospects for organic photovoltaics
,”
Chem. Rev.
122
,
14180
14274
(
2022
).
15.
E.
Vauthey
, “
Elucidating the mechanism of bimolecular photoinduced electron transfer reactions
,”
J. Phys. Chem. B
126
,
778
788
(
2022
).
16.
S.
Giannini
and
J.
Blumberger
, “
Charge transport in organic semiconductors: The perspective from nonadiabatic molecular dynamics
,”
Acc. Chem. Res.
55
,
819
830
(
2022
).
17.
E.
Romero
,
V. I.
Novoderezhkin
, and
R.
van Grondelle
, “
Quantum design of photosynthesis for bio-inspired solar-energy conversion
,”
Nature
543
,
355
365
(
2017
).
18.
A. H.
Proppe
,
Y. C.
Li
,
A.
Aspuru-Guzik
,
C. P.
Berlinguette
,
C. J.
Chang
,
R.
Cogdell
,
A. G.
Doyle
,
J.
Flick
,
N. M.
Gabor
,
R.
van Grondelle
et al, “
Bioinspiration in light harvesting and catalysis
,”
Nat. Rev. Mater.
5
,
828
846
(
2020
).
19.
Z.
Ma
,
Z.
Lin
,
C. M.
Lawrence
,
I. V.
Rubtsov
,
P.
Antoniou
,
S. S.
Skourtis
,
P.
Zhang
, and
D. N.
Beratan
, “
How can infra-red excitation both accelerate and slow charge transfer in the same molecule?
,”
Chem. Sci.
9
,
6395
6405
(
2018
).
20.
X.
Wan
,
C.
Li
,
M.
Zhang
, and
Y.
Chen
, “
Acceptor–donor–acceptor type molecules for high performance organic photovoltaics–chemistry and mechanism
,”
Chem. Soc. Rev.
49
,
2828
2842
(
2020
).
21.
O. V.
Prezhdo
, “
Modeling non-adiabatic dynamics in nanoscale and condensed matter systems
,”
Acc. Chem. Res.
54
,
4239
4249
(
2021
).
22.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
,
2215
2287
(
2020
).
23.
T.-S.
Zhang
,
Y.-G.
Fang
,
X.-F.
Song
,
W.-H.
Fang
, and
G.
Cui
, “
Hydrogen-bonding interaction regulates photoisomerization of a single-bond-rotation locked photoactive yellow protein chromophore in protein
,”
J. Phys. Chem. Lett.
11
,
2470
2476
(
2020
).
24.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
New York
,
2006
).
25.
S. H.
Lin
,
C. H.
Chang
,
K. K.
Liang
,
R.
Chang
,
Y. J.
Shiu
,
J. M.
Zhang
,
T.-S.
Yang
,
M.
Hayashi
, and
F. C.
Hsu
, “
Ultrafast dynamics and spectroscopy of bacterial photosynthetic reaction centers
,” in
Advances in Chemical Physics
, Vol. 121 (
John Wiley & Sons, Ltd.
,
2002
), Chap. 1, pp.
1
88
, https://onlinelibrary.wiley.com/doi/10.1002/0471264318.ch1.
26.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
, “
Excited state radiationless decay process with Duschinsky rotation effect: Formalism and implementation
,”
J. Chem. Phys.
126
,
114302
(
2007
).
27.
A. N.
Beyer
,
J. O.
Richardson
,
P. J.
Knowles
,
J.
Rommel
, and
S. C.
Althorpe
, “
Quantum tunneling rates of gas-phase reactions from on-the-fly instanton calculations
,”
J. Phys. Chem. Lett.
7
,
4374
4379
(
2016
).
28.
S.
Chaudhuri
,
S.
Hedström
,
D. D.
Méndez-Hernández
,
H. P.
Hendrickson
,
K. A.
Jung
,
J.
Ho
, and
V. S.
Batista
, “
Electron transfer assisted by vibronic coupling from multiple modes
,”
J. Chem. Theory Comput.
13
,
6000
6009
(
2017
).
29.
R.
Ianconescu
and
E.
Pollak
, “
Photoinduced cooling of polyatomic molecules in an electronically excited state in the presence of Dushinskii rotations
,”
J. Phys. Chem. A
108
,
7778
7784
(
2004
).
30.
Y.
Niu
,
Q.
Peng
, and
Z.
Shuai
, “
Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect
,”
Sci. China, Ser. B: Chem.
51
,
1153
1158
(
2008
).
31.
M.
Etinski
,
J.
Tatchen
, and
C. M.
Marian
, “
Time-dependent approaches for the calculation of intersystem crossing rates
,”
J. Chem. Phys.
134
,
154105
(
2011
).
32.
E. R.
Heller
and
J. O.
Richardson
, “
Instanton formulation of Fermi’s golden rule in the Marcus inverted regime
,”
J. Chem. Phys.
152
,
034106
(
2020
).
33.
M. A. C.
Saller
,
Y.
Lai
, and
E.
Geva
, “
Cavity-modified Fermi’s golden rule rate constants from cavity-free inputs
,”
J. Phys. Chem. C
127
,
3154
3164
(
2023
).
34.
Z.
Liu
,
W.
Xu
,
M. E.
Tuckerman
, and
X.
Sun
, “
Imaginary-time open-chain path-integral approach for two-state time correlation functions and applications in charge transfer
,”
J. Chem. Phys.
157
,
114111
(
2022
).
35.
R. A.
Marcus
, “
On the theory of oxidation–reduction reactions involving electron transfer. I
,”
J. Chem. Phys.
24
,
966
978
(
1956
).
36.
R. A.
Marcus
, “
Electrostatic free energy and other properties of states having nonequilibrium polarization. I
,”
J. Chem. Phys.
24
,
979
989
(
1956
).
37.
R. A.
Marcus
, “
Electron transfer reactions in chemistry. Theory and experiment
,”
Rev. Mod. Phys.
65
,
599
(
1993
).
38.
Y.
Georgievskii
,
C. P.
Hsu
, and
R. A.
Marcus
, “
Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model
,”
J. Chem. Phys.
110
,
5307
5317
(
1999
).
39.
X.
Sun
and
E.
Geva
, “
Equilibrium Fermi’s golden rule charge transfer rate constants in the condensed phase: The linearized semiclassical method vs classical Marcus theory
,”
J. Phys. Chem. A
120
,
2976
2990
(
2016
).
40.
X.
Sun
,
P.
Zhang
,
Y.
Lai
,
K. L.
Williams
,
M. S.
Cheung
,
B. D.
Dunietz
, and
E.
Geva
, “
Computational study of charge-transfer dynamics in the carotenoid–porphyrin–C60 molecular triad solvated in explicit tetrahydrofuran and its spectroscopic signature
,”
J. Phys. Chem. C
122
,
11288
11299
(
2018
).
41.
J.
Tinnin
,
S.
Bhandari
,
P.
Zhang
,
H.
Aksu
,
B.
Maiti
,
E.
Geva
,
B. D.
Dunietz
,
X.
Sun
, and
M. S.
Cheung
, “
Molecular-level exploration of the structure-function relations underlying interfacial charge transfer in the subphthalocyanine/C60 organic photovoltaic system
,”
Phys. Rev. Appl.
13
,
054075
(
2020
).
42.
J.
Tinnin
,
S.
Bhandari
,
P.
Zhang
,
E.
Geva
,
B. D.
Dunietz
,
X.
Sun
, and
M. S.
Cheung
, “
Correlating interfacial charge transfer rates with interfacial molecular structure in the tetraphenyldibenzoperiflanthene/C70 organic photovoltaic system
,”
J. Phys. Chem. Lett.
13
,
763
769
(
2022
).
43.
J.
Tinnin
,
H.
Aksu
,
Z.
Tong
,
P.
Zhang
,
E.
Geva
,
B. D.
Dunietz
,
X.
Sun
, and
M. S.
Cheung
, “
CTRAMER: An open-source software package for correlating interfacial charge transfer rate constants with donor/acceptor geometries in organic photovoltaic materials
,”
J. Chem. Phys.
154
,
214108
(
2021
).
44.
R. D.
Coalson
,
D. G.
Evans
, and
A.
Nitzan
, “
A nonequilibrium golden rule formula for electronic state populations in nonadiabatically coupled systems
,”
J. Chem. Phys.
101
,
436
(
1994
).
45.
D. G.
Evans
and
R. D.
Coalson
, “
Incorporating backflow into a relaxation theory treatment of the dynamics of nonequilibrium nonadiabatic transition processes
,”
J. Chem. Phys.
102
,
5658
5668
(
1995
).
46.
D. G.
Evans
and
R. D.
Coalson
, “
Simulation of electron transfer in polar solvents: Effects of nonequilibrium initial state preparation
,”
J. Chem. Phys.
104
,
3598
3608
(
1996
).
47.
M.
Cho
and
R. J.
Silbey
, “
Nonequilibrium photoinduced electron transfer
,”
J. Chem. Phys.
103
,
595
606
(
1995
).
48.
H.
Sumi
, “
Enhanced excitation transfer during vibrational relaxation after pumping and generalized Förster’s formula
,”
Phys. Rev. Lett.
50
,
1709
1712
(
1983
).
49.
A. F.
Izmaylov
,
D.
Mendive Tapia
,
M. J.
Bearpark
,
M. A.
Robb
,
J. C.
Tully
, and
M. J.
Frisch
, “
Nonequilibrium Fermi golden rule for electronic transitions through conical intersections
,”
J. Chem. Phys.
135
,
234106
(
2011
).
50.
J. S.
Endicott
,
L.
Joubert-Doriol
, and
A. F.
Izmaylov
, “
A perturbative formalism for electronic transitions through conical intersections in a fully quadratic vibronic model
,”
J. Chem. Phys.
141
,
034104
(
2014
).
51.
D. V.
Matyushov
, “
Nonequilibrium vibrational population and donor-acceptor vibrations affecting rates of radiationless transitions
,”
J. Chem. Phys.
150
,
074504
(
2019
).
52.
R.
Borrelli
and
A.
Peluso
, “
The temperature dependence of radiationless transition rates from ab initio computations
,”
Phys. Chem. Chem. Phys.
13
,
4420
(
2011
).
53.
K.
Song
and
Q.
Shi
, “
Theoretical study of photoinduced proton coupled electron transfer reaction using the non-perturbative hierarchical equations of motion method
,”
J. Chem. Phys.
146
,
184108
(
2017
).
54.
X.
Sun
and
E.
Geva
, “
Nonequilibrium Fermi’s golden rule charge transfer rates via the linearized semiclassical method
,”
J. Chem. Theory Comput.
12
,
2926
2941
(
2016
).
55.
X.
Sun
and
E.
Geva
, “
Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method
,”
J. Chem. Phys.
145
,
064109
(
2016
).
56.
Z.
Hu
,
Z.
Tong
,
M. S.
Cheung
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
, “
Photoinduced charge transfer dynamics in the carotenoid–porphyrin–C60 triad via the linearized semiclassical nonequilibrium Fermi’s golden rule
,”
J. Phys. Chem. B
124
,
9579
9591
(
2020
).
57.
D.
Brian
and
X.
Sun
, “
Linear-response and nonlinear-response formulations of the instantaneous Marcus theory for nonequilibrium photoinduced charge transfer
,”
J. Chem. Theory Comput.
17
,
2065
2079
(
2021
).
58.
D.
Brian
,
Z.
Liu
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
, “
Three-state harmonic models for photoinduced charge transfer
,”
J. Chem. Phys.
154
,
174105
(
2021
).
59.
Z.
Hu
,
D.
Brian
, and
X.
Sun
, “
Multi-state harmonic models with globally shared bath for nonadiabatic dynamics in the condensed phase
,”
J. Chem. Phys.
155
,
124105
(
2021
).
60.
Z.
Hu
and
X.
Sun
, “
All-atom nonadiabatic semiclassical mapping dynamics for photoinduced charge transfer of organic photovoltaic molecules in explicit solvents
,”
J. Chem. Theory Comput.
18
,
5819
5836
(
2022
).
61.
Z.
Hu
,
Z.
Liu
, and
X.
Sun
, “
Effects of heterogeneous protein environment on excitation energy transfer dynamics in the Fenna–Matthews–Olson complex
,”
J. Phys. Chem. B
126
,
9271
9287
(
2022
).
62.
Z.
Liu
,
H.
Hu
, and
X.
Sun
, “
Multistate reaction coordinate model for charge and energy transfer dynamics in the condensed phase
,”
J. Chem. Theory Comput.
19
,
7151
7170
(
2023
).
63.
P. A.
Liddell
,
D.
Kuciauskas
,
J. P.
Sumida
,
B.
Nash
,
D.
Nguyen
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photoinduced charge separation and charge recombination to a triplet state in a carotene–porphyrin–fullerene triad
,”
J. Am. Chem. Soc.
119
,
1400
1405
(
1997
).
64.
P. A.
Liddell
,
G.
Kodis
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photonic switching of photoinduced electron transfer in a dithienylethene–porphyrin–fullerene triad molecule
,”
J. Am. Chem. Soc.
124
,
7668
7669
(
2002
).
65.
C.
Andrea Rozzi
,
S.
Maria Falke
,
N.
Spallanzani
,
A.
Rubio
,
E.
Molinari
,
D.
Brida
,
M.
Maiuri
,
G.
Cerullo
,
H.
Schramm
,
J.
Christoffers
, and
C.
Lienau
, “
Quantum coherence controls the charge separation in a prototypical artificial light–harvesting system
,”
Nat. Commun.
4
,
1602
1607
(
2013
).
66.
D.
Carbonera
,
M.
Di Valentin
,
C.
Corvaja
,
G.
Agostini
,
G.
Giacometti
,
P. A.
Liddell
,
D.
Kuciauskas
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene–porphyrin–fullerene triad
,”
J. Am. Chem. Soc.
120
,
4398
4405
(
1998
).
67.
D.
Kuciauskas
,
P. A.
Liddell
,
S.
Lin
,
S. G.
Stone
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Photoinduced electron transfer in carotenoporphyrin–fullerene triads: Temperature and solvent effects
,”
J. Phys. Chem. B
104
,
4307
4321
(
2000
).
68.
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
, “
Mimicking photosynthetic solar energy transduction
,”
Acc. Chem. Res.
34
,
40
48
(
2001
).
69.
N.
Spallanzani
,
C. A.
Rozzi
,
D.
Varsano
,
T.
Baruah
,
M. R.
Pederson
,
F.
Manghi
, and
A.
Rubio
, “
Photoexcitation of a light-harvesting supramolecular triad: A time-dependent DFT study
,”
J. Phys. Chem. B
113
,
5345
5349
(
2009
).
70.
Y. E.
Kandrashkin
, “
Influence of spin decoherence on the yield of photodriven quantum teleportation in molecular triads
,”
J. Phys. Chem. Lett.
12
,
6405
6410
(
2021
).
71.
J. L.
Bahr
,
D.
Kuciauskas
,
P. A.
Liddell
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
, “
Driving force and electronic coupling effects on photoinduced electron transfer in a fullerene-based molecular triad
,”
Photochem. Photobiol.
72
,
598
(
2000
).
72.
M. U.
Winters
,
E.
Dahlstedt
,
H. E.
Blades
,
C. J.
Wilson
,
M. J.
Frampton
,
H. L.
Anderson
, and
B.
Albinsson
, “
Probing the efficiency of electron transfer through porphyrin-based molecular wires
,”
J. Am. Chem. Soc.
129
,
4291
4297
(
2007
).
73.
D.
Brian
and
X.
Sun
, “
Charge-transfer landscape manifesting the structure-rate relationship in the condensed phase via machine learning
,”
J. Phys. Chem. B
125
,
13267
13278
(
2021
).
74.
Y.
Lai
and
E.
Geva
, “
On simulating the dynamics of electronic populations and coherences via quantum master equations based on treating off-diagonal electronic coupling terms as a small perturbation
,”
J. Chem. Phys.
155
,
204101
(
2021
).
75.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
76.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
New York
,
2010
).
77.
A. A.
Voityuk
and
N.
Rösch
, “
Fragment charge difference method for estimating donor–acceptor electronic coupling: Application to DNA π-stacks
,”
J. Chem. Phys.
117
,
5607
5616
(
2002
).
78.
H. D.
Meyera
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
79.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
,
578
581
(
1997
).
80.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
81.
S. J.
Cotton
,
K.
Igumenshchev
, and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer
,”
J. Chem. Phys.
141
,
084104
(
2014
).
82.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix
,”
J. Chem. Phys.
145
,
081102
(
2016
).
83.
S. J.
Cotton
and
W. H.
Miller
, “
A new symmetrical quasi-classical model for electronically non-adiabatic processes: Application to the case of weak non-adiabatic coupling
,”
J. Chem. Phys.
145
,
144108
(
2016
).
84.
S. J.
Cotton
,
R.
Liang
, and
W. H.
Miller
, “
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics
,”
J. Chem. Phys.
147
,
064112
(
2017
).
85.
S. J.
Cotton
and
W. H.
Miller
, “
A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states
,”
J. Chem. Phys.
150
,
104101
(
2019
).
86.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
, “
A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation
,”
J. Chem. Phys.
150
,
034101
(
2019
).
87.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating electronically nonadiabatic molecular dynamics
,”
J. Chem. Theory Comput.
16
,
2883
2895
(
2020
).
88.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics
,”
J. Chem. Phys.
150
,
071101
(
2019
).
89.
Y.
Deng
,
F.
Peng
,
Y.
Lu
,
X.
Zhu
,
W.
Jin
,
J.
Qiu
,
J.
Dong
,
Y.
Hao
,
D.
Di
,
Y.
Gao
,
T.
Sun
,
M.
Zhang
,
F.
Liu
,
L.
Wang
,
L.
Ying
,
F.
Huang
, and
Y.
Jin
, “
Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage
,”
Nat. Photonics
16
,
505
511
(
2022
).
90.
O. P.
Dimitriev
, “
Dynamics of excitons in conjugated molecules and organic semiconductor systems
,”
Chem. Rev.
122
,
8487
8593
(
2022
).
91.
A. A.
Strelnikov
,
A. S.
Konev
,
O. V.
Levin
,
A. F.
Khlebnikov
,
A.
Iwasaki
,
K.
Yamanouchi
, and
N. V.
Tkachenko
, “
Switching competition between electron and energy transfers in porphyrin–fullerene dyads
,”
J. Phys. Chem. B
124
,
10899
10912
(
2020
).
92.
T.
Wang
,
X.
Su
,
X.
Zhang
,
X.
Nie
,
L.
Huang
,
X.
Zhang
,
X.
Sun
,
Y.
Luo
, and
G.
Zhang
, “
Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes
,”
Adv. Mater.
31
,
1904273
(
2019
).
93.
Q.
Yang
,
Z.
Hu
,
S.
Zhu
,
R.
Ma
,
H.
Ma
,
Z.
Ma
,
H.
Wan
,
T.
Zhu
,
Z.
Jiang
,
W.
Liu
,
L.
Jiao
,
H.
Sun
,
Y.
Liang
, and
H.
Dai
, “
Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance
,”
J. Am. Chem. Soc.
140
,
1715
1724
(
2018
).
94.
G.
Zhang
,
J.
Zhao
,
P. C. Y.
Chow
,
K.
Jiang
,
J.
Zhang
,
Z.
Zhu
,
J.
Zhang
,
F.
Huang
, and
H.
Yan
, “
Nonfullerene acceptor molecules for bulk heterojunction organic solar cells
,”
Chem. Rev.
118
,
3447
3507
(
2018
).
95.
J.
Wang
,
Z.
Zheng
,
Y.
Zu
,
Y.
Wang
,
X.
Liu
,
S.
Zhang
,
M.
Zhang
, and
J.
Hou
, “
A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control
,”
Adv. Mater.
33
,
2102787
(
2021
).
96.
Y.
Li
,
X.
Huang
,
K.
Ding
,
H. K. M.
Sheriff
,
L.
Ye
,
H.
Liu
,
C.-Z.
Li
,
H.
Ade
, and
S. R.
Forrest
, “
Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years
,”
Nat. Commun.
12
,
5419
(
2021
).
97.
Y.
Shi
,
Y.
Chang
,
K.
Lu
,
Z.
Chen
,
J.
Zhang
,
Y.
Yan
,
D.
Qiu
,
Y.
Liu
,
M. A.
Adil
,
W.
Ma
,
X.
Hao
,
L.
Zhu
, and
Z.
Wei
, “
Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells
,”
Nat. Commun.
13
,
3256
(
2022
).
98.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
,
J. S.
Lundeen
,
J. K.
McCusker
,
S.
Mukamel
,
J. P.
Ogilvie
,
A.
Olaya-Castro
,
M. A.
Ratner
,
F. C.
Spano
,
K. B.
Whaley
, and
X.
Zhu
, “
Using coherence to enhance function in chemical and biophysical systems
,”
Nature
543
,
647
656
(
2017
).
99.
R.
Liang
,
J. K.
Yu
,
J.
Meisner
,
F.
Liu
, and
T. J.
Martinez
, “
Electrostatic control of photoisomerization in channelrhodopsin 2
,”
J. Am. Chem. Soc.
143
,
5425
5437
(
2021
).
100.
J.
Kim
,
T. C.
Nguyen-Phan
,
A. T.
Gardiner
,
R. J.
Cogdell
,
G. D.
Scholes
, and
M.
Cho
, “
Low-frequency vibronic mixing modulates the excitation energy flow in bacterial light-harvesting complex II
,”
J. Phys. Chem. Lett.
12
,
6292
6298
(
2021
).

Supplementary Material

You do not currently have access to this content.