Solid–water interfaces are ubiquitous in nature and technology. In particular, technologies evolving in the green transition, such as electrocatalysis, heavily rely on the junction of an electrolyte and an electrode as a central part of the device. For the understanding of atomic-scale processes taking place at the electrolyte–electrode interface, density functional theory (DFT) has become the de facto standard. The validation of DFT’s ability to simulate the interfacial solid/water interaction is crucial, and ideal simulation setups need to be identified in order to prevent avoidable systematic errors. Here, we develop a rigorous sampling protocol for benchmarking the adsorption/desorption energetics of water on metallic surfaces against experimental temperature programmed desorption, single crystal adsorption calorimetry, and thermal energy atom scattering. We screened DFT’s quality on a series of transition metal surfaces, applying three of the most common exchange–correlation approximations: PBE-D3, RPBE-D3, and BEEF-vdW. We find that all three xc-functionals reflect the pseudo-zeroth order desorption of water rooted in the combination of attractive adsorbate–adsorbate interactions and their saturation at low and intermediate coverages, respectively. However, both RPBE-D3 and BEEF-vdW lead to more accurate water adsorption strengths, while PBE-D3 clearly overbinds near-surface water. We relate the variations in binding strength to specific variations in water–metal and water–water interactions, highlighting the structural consequences inherent in an uninformed choice of simulation parameters. Our study gives atomistic insight into water’s complex adsorption equilibrium. Furthermore, it represents a guideline for future DFT-based simulations of solvated solid interfaces by providing an assessment of systematic errors in specific setups.

1.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
, “
Water at interfaces
,”
Chem. Rev.
116
,
7698
7726
(
2016
).
2.
S.
Gim
,
K. J.
Cho
,
H.-K.
Lim
, and
H.
Kim
, “
Structure, dynamics, and wettability of water at metal interfaces
,”
Sci. Rep.
9
,
14805
(
2019
).
3.
P. A.
Thiel
and
T. E.
Madey
, “
The interaction of water with solid surfaces: Fundamental aspects
,”
Surf. Sci. Rep.
7
,
211
385
(
1987
).
4.
M. A.
Henderson
, “
The interaction of water with solid surfaces: Fundamental aspects revisited
,”
Surf. Sci. Rep.
46
,
1
308
(
2002
).
5.
J.-B.
Le
and
J.
Cheng
, “
Modeling electrochemical interfaces from ab initio molecular dynamics: Water adsorption on metal surfaces at potential of zero charge
,”
Curr. Opin. Electrochem.
19
,
129
136
(
2020
).
6.
J.
Carrasco
,
A.
Michaelides
,
M.
Forster
,
S.
Haq
,
R.
Raval
, and
A.
Hodgson
, “
A one-dimensional ice structure built from pentagons
,”
Nat. Mater.
8
,
427
431
(
2009
).
7.
V.
Kapil
,
C.
Schran
,
A.
Zen
,
J.
Chen
,
C. J.
Pickard
, and
A.
Michaelides
, “
The first-principles phase diagram of monolayer nanoconfined water
,”
Nature
609
,
512
516
(
2022
).
8.
G. A.
Kimmel
,
N. G.
Petrik
,
Z.
Dohnálek
, and
B. D.
Kay
, “
Crystalline ice growth on Pt(111) and Pd(111): Nonwetting growth on a hydrophobic water monolayer
,”
J. Chem. Phys.
126
,
114702
(
2007
).
9.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
10.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
, “
A molecular perspective of water at metal interfaces
,”
Nat. Mater.
11
,
667
674
(
2012
).
11.
B.
Hammer
and
J.
Nørskov
, “
Theoretical surface science and catalysis—Calculations and concepts
,”
Adv. Catal.
45
,
71
129
(
2000
).
12.
J.-B.
Le
and
J.
Cheng
, “
Modeling electrified metal/water interfaces from ab initio molecular dynamics: Structure and Helmholtz capacitance
,”
Curr. Opin. Electrochem.
27
,
100693
(
2021
).
13.
A.
Chen
,
J.-B.
Le
,
Y.
Kuang
, and
J.
Cheng
, “
Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics
,”
J. Chem. Phys.
157
,
094702
(
2022
).
14.
A.
Groß
and
S.
Sakong
, “
Ab initio simulations of water/metal interfaces
,”
Chem. Rev.
122
,
10746
10776
(
2022
).
15.
D. T.
Limmer
,
A. P.
Willard
,
P. A.
Madden
, and
D.
Chandler
, “
Water exchange at a hydrated platinum electrode is rare and collective
,”
J. Phys. Chem. C
119
,
24016
24024
(
2015
).
16.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals
,”
Phys. Rev. B
59
,
7413
7421
(
1999
).
17.
K.
Tonigold
and
A.
Groß
, “
Dispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and RPBE functional including semiempirical dispersion corrections
,”
J. Comput. Chem.
33
,
695
701
(
2012
).
18.
S.
Sakong
,
K.
Forster-Tonigold
, and
A.
Groß
, “
The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles
,”
J. Chem. Phys.
144
,
194701
(
2016
).
19.
J.
Carrasco
,
J.
Klimeš
, and
A.
Michaelides
, “
The role of van der Waals forces in water adsorption on metals
,”
J. Chem. Phys.
138
,
024708
(
2013
).
20.
I.
Hamada
,
K.
Lee
, and
Y.
Morikawa
, “
Interaction of water with a metal surface: Importance of van der Waals forces
,”
Phys. Rev. B
81
,
115452
(
2010
).
21.
J.
Carrasco
,
B.
Santra
,
J.
Klimeš
, and
A.
Michaelides
, “
To wet or not to wet? Dispersion forces tip the balance for water ice on metals
,”
Phys. Rev. Lett.
106
,
026101
(
2011
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
23.
A.
Groß
, “
Challenges for ab initio molecular dynamics simulations of electrochemical interfaces
,”
Curr. Opin. Electrochem.
40
,
101345
(
2023
).
24.
C. T.
Campbell
and
J. R. V.
Sellers
, “
Enthalpies and entropies of adsorption on well-defined oxide surfaces: Experimental measurements
,”
Chem. Rev.
113
,
4106
4135
(
2013
).
25.
J. L.
Daschbach
,
B. M.
Peden
,
R. S.
Smith
, and
B. D.
Kay
, “
Adsorption, desorption, and clustering of H2O on Pt(111)
,”
J. Chem. Phys.
120
,
1516
1523
(
2004
).
26.
V.
Rakić
and
L.
Damjanović
, “
Temperature-programmed desorption (TPD) methods
,” in
Calorimetry and Thermal Methods in Catalysis
, edited by
A.
Auroux
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2013
), pp.
131
174
.
27.
J.
Kanervo
,
Kinetic Analysis of Temperature-Programmed Reactions
(
Helsinki University of Technology
,
2003
).
28.
S.
Vijay
,
H. H.
Kristoffersen
,
Y.
Katayama
,
Y.
Shao-Horn
,
I.
Chorkendorff
,
B.
Seger
, and
K.
Chan
, “
How to extract adsorption energies, adsorbate–adsorbate interaction parameters and saturation coverages from temperature programmed desorption experiments
,”
Phys. Chem. Chem. Phys.
23
,
24396
24402
(
2021
).
29.
A. L.
Glebov
,
A. P.
Graham
, and
A.
Menzel
, “
Vibrational spectroscopy of water molecules on Pt(111) at submonolayer coverages
,”
Surf. Sci.
427–428
,
22
26
(
1999
).
30.
C. T.
Campbell
, “
Energies of adsorbed catalytic intermediates on transition metal surfaces: Calorimetric measurements and benchmarks for theory
,”
Acc. Chem. Res.
52
,
984
993
(
2019
).
31.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
32.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
33.
C.
Badan
,
M. T. M.
Koper
, and
L. B. F.
Juurlink
, “
How well does Pt(211) represent Pt[n(111) × (100)] surfaces in adsorption/desorption?
,”
J. Phys. Chem. C
119
,
13551
13560
(
2015
).
34.
G. A.
Kimmel
,
N. G.
Petrik
,
Z.
Dohnálek
, and
B. D.
Kay
, “
Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer
,”
Phys. Rev. Lett.
95
,
166102
(
2005
).
35.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E.
Leonhard Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J.
Bergmann Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
36.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
37.
J.
Moellmann
and
S.
Grimme
, “
DFT-D3 study of some molecular crystals
,”
J. Phys. Chem. C
118
,
7615
7621
(
2014
).
38.
J.
Wellendorff
,
K. T.
Lundgaard
,
A.
Møgelhøj
,
V.
Petzold
,
D. D.
Landis
,
J. K.
Nørskov
,
T.
Bligaard
, and
K. W.
Jacobsen
, “
Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
,”
Phys. Rev. B
85
,
235149
(
2012
).
39.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
van der Waals density functional for general geometries
,”
Phys. Rev. Lett.
92
,
246401
(
2004
).
40.
S.
Seabold
and
J.
Perktold
, “
Statsmodels: Econometric and statistical modeling with python
,” in
Proceedings of the 9th Python in Science Conference
(
Austin, TX
,
2010
), Vol.
57
, pp.
10–25080
, https://doi.org/10.25080/Majora-92bf1922-011.
41.
W.
Zhao
,
S. J.
Carey
,
Z.
Mao
, and
C. T.
Campbell
, “
Adsorbed hydroxyl and water on Ni(111): Heats of formation by calorimetry
,”
ACS Catal.
8
,
1485
1489
(
2018
).
42.
W.
Lew
,
M. C.
Crowe
,
E.
Karp
, and
C. T.
Campbell
, “
Energy of molecularly adsorbed water on clean Pt(111) and Pt(111) with coadsorbed oxygen by calorimetry
,”
J. Phys. Chem. C
115
,
9164
9170
(
2011
).
43.
A.
Hodgson
and
S.
Haq
, “
Water adsorption and the wetting of metal surfaces
,”
Surf. Sci. Rep.
64
,
381
451
(
2009
).
44.
M.
Naderian
and
A.
Groß
, “
From single molecules to water networks: Dynamics of water adsorption on Pt(111)
,”
J. Chem. Phys.
145
,
094703
(
2016
).
45.
K.
Mistry
,
N.
Gerrard
, and
A.
Hodgson
, “
Wetting of a stepped platinum (211) surface
,”
J. Phys. Chem. C
127
,
4741
4748
(
2023
).
46.
S.
Haq
,
J.
Harnett
, and
A.
Hodgson
, “
Growth of thin crystalline ice films on Pt(111)
,”
Surf. Sci.
505
,
171
182
(
2002
).
47.
Y.
Wang
,
H.
Wei
, and
Z.
Li
, “
Effect of magnetic field on the physical properties of water
,”
Results Phys.
8
,
262
267
(
2018
).
48.
S.
Ozeki
,
C.
Wakai
, and
S.
Ono
, “
Is a magnetic effect on water adsorption possible?
,”
J. Phys. Chem.
95
,
10557
10559
(
1991
).
49.
M. E.
Grillo
,
M. W.
Finnis
, and
W.
Ranke
, “
Surface structure and water adsorption on Fe3O4(111): Spin-density functional theory and on-site Coulomb interactions
,”
Phys. Rev. B
77
,
075407
(
2008
).
50.
W.
Mtangi
,
V.
Kiran
,
C.
Fontanesi
, and
R.
Naaman
, “
Role of the electron spin polarization in water splitting
,”
J. Phys. Chem. Lett.
6
,
4916
4922
(
2015
).
51.
K.
Forster-Tonigold
and
A.
Groß
, “
Dispersion corrected RPBE studies of liquid water
,”
J. Chem. Phys.
141
,
064501
(
2014
).
52.
A.
Picolin
,
C.
Busse
,
A.
Redinger
,
M.
Morgenstern
, and
T.
Michely
, “
Desorption of H2O from flat and stepped Pt(111)
,”
J. Phys. Chem. C
113
,
691
697
(
2009
).
53.
B. D.
Kay
,
K. R.
Lykke
,
J. R.
Creighton
, and
S. J.
Ward
, “
The influence of adsorbate–absorbate hydrogen bonding in molecular chemisorption: NH3, HF, and H2O on Au(111)
,”
J. Chem. Phys.
91
,
5120
5121
(
1989
).
54.
M. A.
Lazaga
,
D. T.
Wickham
,
D. H.
Parker
,
G. N.
Kastanas
, and
B. E.
Koel
, “
Reactivity of oxygen adatoms on the Au(111) surface
,” in
Catalytic Selective Oxidation
,
ACS Symposium Series
(
American Chemical Society
,
1993
), Vol.
523
, pp.
90
109
, Book section 8.
55.
B. J.
Hinch
and
L. H.
Dubois
, “
Stable and metastable phases of water adsorbed on Cu(111)
,”
J. Chem. Phys.
96
,
3262
3268
(
1992
).
56.
M.
Schulze
,
R.
Reißner
,
K.
Bolwin
, and
W.
Kuch
, “
Interaction of water with clean and oxygen precovered nickel surfaces
,”
Fresenius’ J. Anal. Chem.
353
,
661
665
(
1995
).
57.
T.
Pache
,
H. P.
Steinrück
,
W.
Huber
, and
D.
Menzel
, “
The adsorption of H2O on clean and oxygen precovered Ni(111) studied by ARUPS and TPD
,”
Surf. Sci.
224
,
195
214
(
1989
).
58.
A.
Michaelides
, “
Density functional theory simulations of water–metal interfaces: Waltzing waters, a novel 2D ice phase, and more
,”
Appl. Phys. A
85
,
415
425
(
2006
).
59.
S.
Meng
,
E. G.
Wang
, and
S.
Gao
, “
Water adsorption on metal surfaces: A general picture from density functional theory studies
,”
Phys. Rev. B
69
,
195404
(
2004
).
60.
H. H.
Heenen
,
J. A.
Gauthier
,
H. H.
Kristoffersen
,
T.
Ludwig
, and
K.
Chan
, “
Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches
,”
J. Chem. Phys.
152
,
144703
(
2020
).
61.
V.
Wieser
,
P.
Bilotto
,
U.
Ramach
,
H.
Yuan
,
K.
Schwenzfeier
,
H.-W.
Cheng
, and
M.
Valtiner
, “
Novel in situ sensing surface forces apparatus for measuring gold versus gold, hydrophobic, and biophysical interactions
,”
J. Vac. Sci. Technol., A
39
,
023201
(
2021
).
62.
T.
Lankau
and
I. L.
Cooper
, “
(H2O)6 on a virtual metal surface: Testing the surface ice rules
,”
J. Phys. Chem. A
105
,
4084
4095
(
2001
).
63.
T.
Sugimoto
and
Y.
Matsumoto
, “
Orientational ordering in heteroepitaxial water ice on metal surfaces
,”
Phys. Chem. Chem. Phys.
22
,
16453
16466
(
2020
).
64.
R.
Ma
,
D.
Cao
,
C.
Zhu
,
Y.
Tian
,
J.
Peng
,
J.
Guo
,
J.
Chen
,
X.-Z.
Li
,
J. S.
Francisco
,
X. C.
Zeng
,
L.-M.
Xu
,
E.-G.
Wang
, and
Y.
Jiang
, “
Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice
,”
Nature
577
,
60
63
(
2020
).
65.
S.
Duan
,
I. Y.
Zhang
,
Z.
Xie
, and
X.
Xu
, “
Identification of water hexamer on Cu(111) surfaces
,”
J. Am. Chem. Soc.
142
,
6902
6906
(
2020
).
66.
M.
Nakamura
and
M.
Ito
, “
Ring hexamer like cluster molecules of water formed on a Ni(111) surface
,”
Chem. Phys. Lett.
384
,
256
261
(
2004
).
You do not currently have access to this content.