We study, through molecular dynamics simulations, three aqueous solutions with one lysozyme protein and three different concentrations of trehalose and dimethyl sulfoxide (DMSO). We analyze the structural and dynamical properties of the protein hydration water upon cooling. We find that trehalose plays a major role in modifying the structure of the network of HBs between water molecules in the hydration layer of the protein. The dynamics of hydration water presents, in addition to the α-relaxation, typical of glass formers, a slower long-time relaxation process, which greatly slows down the dynamics of water, particularly in the systems with trehalose, where it becomes dominant at low temperatures. In all the solutions, we observe, from the behavior of the α-relaxation times, a shift of the Mode Coupling Theory crossover temperature and the fragile-to-strong crossover temperature toward higher values with respect to bulk water. We also observe a strong-to-strong crossover from the temperature behavior of the long-relaxation times. In the aqueous solution with only DMSO, the transition shifts to a lower temperature than in the case with only lysozyme reported in the literature. We observe that the addition of trehalose to the mixture has the opposite effect of restoring the original location of the strong-to-strong crossover. In all the solutions analyzed in this work, the observed temperature of the protein dynamical transition is slightly shifted at lower temperatures than that of the strong-to-strong crossover, but their relative order is the same, showing a correlation between the motion of the protein and that of the hydration water.

1.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
2.
F.
Franks
,
Water: A Matrix of Life
(
The Royal Society of Chemistry
,
2000
).
3.
P. G.
Debenedetti
, “
Supercooled and glassy water
,”
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
4.
O.
Mishima
and
H. E.
Stanley
, “
The relationship between liquid, supercooled and glassy water
,”
Nature
396
,
329
(
1998
).
5.
P.
Gallo
,
J.
Bachler
,
L. E.
Bove
,
R.
Böhmer
,
G.
Camisasca
,
L. E.
Coronas
,
H. R.
Corti
,
I.
de Almeida Ribeiro
,
M.
de Koning
,
G.
Franzese
,
V.
Fuentes-Landete
,
C.
Gainaru
,
T.
Loerting
,
J. M. M.
de Oca
,
P. H.
Poole
,
M.
Rovere
,
F.
Sciortino
,
C. M.
Tonauer
, and
G. A.
Appignanesi
, “
Advances in the study of supercooled water
,”
Eur. Phys. J. E
44
,
143
(
2021
).
6.
P.
Gallo
and
H. E.
Stanley
, “
Supercooled water reveals its secrets
,”
Science
358
,
1543
1544
(
2017
).
7.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
1996
).
8.
P.
Gallo
and
M.
Rovere
,
Physics of Liquid Matter
(
Springer Nature
,
2022
).
9.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
2008
).
10.
P.
Gallo
,
F.
Sciortino
,
P.
Tartaglia
, and
S.-H.
Chen
, “
Slow dynamics of water molecules in supercooled states
,”
Phys. Rev. Lett.
76
,
2730
2733
(
1996
).
11.
F.
Sciortino
,
P.
Gallo
,
P.
Tartaglia
, and
S. H.
Chen
, “
Supercooled water and the kinetic glass transition
,”
Phys. Rev. E
54
,
6331
6343
(
1996
).
12.
R.
Torre
,
P.
Bartolini
, and
R.
Righini
, “
Structural relaxation in supercooled water by time-resolved spectroscopy
,”
Nature
428
,
296
299
(
2004
).
13.
M.
De Marzio
,
G.
Camisasca
,
M.
Rovere
, and
P.
Gallo
, “
Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water
,”
J. Chem. Phys.
144
,
074503
(
2016
).
14.
M.
De Marzio
,
G.
Camisasca
,
M.
Rovere
, and
P.
Gallo
, “
Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes
,”
J. Chem. Phys.
146
,
084502
(
2017
).
15.
L.
Lupi
,
B.
Vázquez Ramírez
, and
P.
Gallo
, “
Dynamical crossover and its connection to the widom line in supercooled TIP4P/ice water
,”
J. Chem. Phys.
155
,
054502
(
2021
).
16.
P.
Gallo
,
M.
Rovere
, and
S. H.
Chen
, “
Water confined in MCM-41: A mode coupling theory analysis
,”
J. Phys.: Condens. Matter
24
,
064109
(
2012
).
17.
L.
Liu
,
S.-H.
Chen
,
A.
Faraone
,
C.-W.
Yen
, and
C.-Y.
Mou
, “
Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water
,”
Phys. Rev. Lett.
95
,
117802
(
2005
).
18.
F.
Mallamace
,
M.
Broccio
,
C.
Corsaro
,
A.
Faraone
,
U.
Wanderlingh
,
L.
Liu
,
C.-Y.
Mou
, and
S. H.
Chen
, “
The fragile-to-strong dynamic crossover transition in confined water: Nuclear magnetic resonance results
,”
J. Chem. Phys.
124
,
161102
(
2006
).
19.
P.
Gallo
,
M.
Rovere
, and
E.
Spohr
, “
Supercooled confined water and the mode coupling crossover temperature
,”
Phys. Rev. Lett.
85
,
4317
4320
(
2000
).
20.
P.
Gallo
,
D.
Corradini
, and
M.
Rovere
, “
Fragile to strong crossover at the widom line in supercooled aqueous solutions of NaCl
,”
J. Chem. Phys.
139
,
204503
(
2013
).
21.
G.
Camisasca
,
M.
De Marzio
,
M.
Rovere
, and
P.
Gallo
, “
High density liquid structure enhancement in glass forming aqueous solution of LiCl
,”
J. Chem. Phys.
148
,
222829
(
2018
).
22.
S.-H.
Chen
,
L.
Liu
,
E.
Fratini
,
P.
Baglioni
,
A.
Faraone
, and
E.
Mamontov
, “
Observation of fragile-to-strong dynamic crossover in protein hydration water
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
9012
9016
(
2006
).
23.
M.
Lagi
,
X.
Chu
,
C.
Kim
,
F.
Mallamace
,
P.
Baglioni
, and
S.-H.
Chen
, “
The low-temperature dynamic crossover phenomenon in protein hydration water: Simulations vs experiments
,”
J. Phys. Chem. B
112
,
1571
1575
(
2008
).
24.
G.
Camisasca
,
M.
De Marzio
,
D.
Corradini
, and
P.
Gallo
, “
Two structural relaxations in protein hydration water and their dynamic crossovers
,”
J. Chem. Phys.
145
,
044503
(
2016
).
25.
G.
Camisasca
,
A.
Iorio
,
M.
De Marzio
, and
P.
Gallo
, “
Structure and slow dynamics of protein hydration water
,”
J. Mol. Liq.
268
,
903
910
(
2018
).
26.
A.
Iorio
,
M.
Minozzi
,
G.
Camisasca
,
M.
Rovere
, and
P.
Gallo
, “
Slow dynamics of supercooled hydration water in contact with lysozyme: Examining the cage effect at different length scales
,”
Philos. Mag.
100
,
2582
2595
(
2020
).
27.
A.
Magno
and
P.
Gallo
, “
Understanding the mechanisms of bioprotection: A comparative study of aqueous solutions of trehalose and maltose upon supercooling
,”
J. Phys. Chem. Lett.
2
,
977
982
(
2011
).
28.
A.
Iorio
,
G.
Camisasca
, and
P.
Gallo
, “
Slow dynamics of hydration water and the trehalose dynamical transition
,”
J. Mol. Liq.
282
,
617
625
(
2019
).
29.
A.
Iorio
,
G.
Camisasca
, and
P.
Gallo
, “
Glassy dynamics of water at interface with biomolecules: A mode coupling theory test
,”
Sci. China: Phys., Mech. Astron.
62
,
107011
(
2019
).
30.
A.
Iorio
,
M.
Minozzi
,
L.
Lupi
,
G.
Camisasca
, and
P.
Gallo
, “
Slow dynamics of supercooled trehalose hydration water in comparison with bulk water
,”
Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis., Mat. Nat.
98
,
A8
(
2020
).
31.
M.
Paolantoni
,
L.
Comez
,
M. E.
Gallina
,
P.
Sassi
,
F.
Scarponi
,
D.
Fioretto
, and
A.
Morresi
, “
Light scattering spectra of water in trehalose aqueous solutions: Evidence for two different solvent relaxation processes
,”
J. Phys. Chem. B
113
,
7874
7878
(
2009
).
32.
L.
Comez
,
L.
Lupi
,
A.
Morresi
,
M.
Paolantoni
,
P.
Sassi
, and
D.
Fioretto
, “
More is different: Experimental results on the effect of biomolecules on the dynamics of hydration water
,”
J. Phys. Chem. Lett.
4
,
1188
1192
(
2013
).
33.
S.
Corezzi
,
M.
Paolantoni
,
P.
Sassi
,
A.
Morresi
,
D.
Fioretto
, and
L.
Comez
, “
Trehalose-induced slowdown of lysozyme hydration dynamics probed by EDLS spectroscopy
,”
J. Chem. Phys.
151
,
015101
(
2019
).
34.
L.
Lupi
and
P.
Gallo
, “
Glassy dynamics of water in TIP4P/ice aqueous solutions of trehalose in comparison with the bulk phase
,”
J. Chem. Phys.
159
,
154504
(
2023
).
35.
D.
Corradini
,
E. G.
Strekalova
,
H. E.
Stanley
, and
P.
Gallo
, “
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose
,”
Sci. Rep.
3
,
1218
(
2013
).
36.
G.
Camisasca
,
M.
De Marzio
, and
P.
Gallo
, “
Effect of trehalose on protein cryoprotection: Insights into the mechanism of slowing down of hydration water
,”
J. Chem. Phys.
153
,
224503
(
2020
).
37.
B. P.
Rosi
,
L.
Tavagnacco
,
L.
Comez
,
P.
Sassi
,
M.
Ricci
,
E.
Buratti
,
M.
Bertoldo
,
C.
Petrillo
,
E.
Zaccarelli
,
E.
Chiessi
, and
S.
Corezzi
, “
Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior
,”
J. Colloid Interface Sci.
604
,
705
718
(
2021
).
38.
S.
Corezzi
,
B.
Bracco
,
P.
Sassi
,
M.
Paolantoni
, and
L.
Comez
, “
Protein hydration in a bioprotecting mixture
,”
Life
11
,
995
(
2021
).
39.
L. M.
Crowe
,
D. S.
Reid
, and
J. H.
Crowe
, “
Is trehalose special for preserving dry biomaterials?
,”
Biophys. J.
71
,
2087
2093
(
1996
).
40.
N. K.
Jain
and
I.
Roy
, “
Effect of trehalose on protein structure
,”
Protein Sci.
18
,
24
36
(
2009
).
41.
L.
Cordone
,
G.
Cottone
,
A.
Cupane
,
A.
Emanuele
,
S.
Giuffrida
, and
M.
Levantino
, “
Proteins in saccharides matrices and the trehalose peculiarity: Biochemical and biophysical properties
,”
Curr. Org. Chem.
19
,
1684
1706
(
2015
).
42.
P. S.
Belton
and
A. M.
Gil
, “
IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme
,”
Biopolymers
34
,
957
961
(
1994
).
43.
A.
Lerbret
,
F.
Affouard
,
P.
Bordat
,
A.
Hédoux
,
Y.
Guinet
, and
M.
Descamps
, “
Slowing down of water dynamics in disaccharide aqueous solutions
,”
J. Non-Cryst. Solids
357
,
695
699
(
2011
).
44.
L.
Lupi
,
L.
Comez
,
M.
Paolantoni
,
D.
Fioretto
, and
B. M.
Ladanyi
, “
Dynamics of biological water: Insights from molecular modeling of light scattering in aqueous trehalose solutions
,”
J. Phys. Chem. B
116
,
7499
7508
(
2012
).
45.
A.
Iorio
,
G.
Camisasca
,
M.
Rovere
, and
P.
Gallo
, “
Characterization of hydration water in supercooled water-trehalose solutions: The role of the hydrogen bonds network
,”
J. Chem. Phys.
151
,
044507
(
2019
).
46.
S.
Giuffrida
,
L.
Cordone
, and
G.
Cottone
, “
Bioprotection can be tuned with a proper protein/saccharide ratio: The case of solid amorphous matrices
,”
J. Phys. Chem. B
122
,
8642
8653
(
2018
).
47.
S.
Giuffrida
,
G.
Cottone
, and
L.
Cordone
, “
The water association band as a marker of hydrogen bonds in trehalose amorphous matrices
,”
Phys. Chem. Chem. Phys.
19
,
4251
4265
(
2017
).
48.
S.
Giuffrida
,
A.
Cupane
, and
G.
Cottone
, “
‘Water association’ band in saccharide amorphous matrices: Role of residual water on bioprotection
,”
Int. J. Mol. Sci.
22
,
2496
(
2021
).
49.
J.
Solocinski
,
Q.
Osgood
,
M.
Wang
,
A.
Connolly
,
M. A.
Menze
, and
N.
Chakraborty
, “
Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism
,”
Cryobiology
75
,
134
143
(
2017
).
50.
G.
Chen
,
A.
Yue
,
Z.
Ruan
,
Y.
Yin
,
R.
Wang
,
Y.
Ren
, and
L.
Zhu
, “
Comparison of the effects of different cryoprotectants on stem cells from umbilical cord blood
,”
Stem Cells Int.
2016
,
1396783
.
51.
J. B.
Mandumpal
,
C. A.
Kreck
, and
R. L.
Mancera
, “
A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions
,”
Phys. Chem. Chem. Phys.
13
,
3839
3842
(
2011
).
52.
J.
Lin
,
B.
Novak
, and
D.
Moldovan
, “
Molecular dynamics simulation study of the effect of DMSO on structural and permeation properties of DMPC lipid bilayers
,”
J. Phys. Chem. B
116
,
1299
1308
(
2012
).
53.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
54.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
55.
A. D.
Mackerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
III
, “
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
,”
J. Comput. Chem.
25
,
1400
1415
(
2004
).
56.
P.
Bjelkmar
,
P.
Larsson
,
M. A.
Cuendet
,
B.
Hess
, and
E.
Lindahl
, “
Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models
,”
J. Chem. Theory Comput.
6
,
459
466
(
2010
).
57.
O.
Guvench
,
S. N.
Greene
,
G.
Kamath
,
J. W.
Brady
,
R. M.
Venable
,
R. W.
Pastor
, and
A. D.
Mackerell
, Jr.
, “
Additive empirical force field for hexopyranose monosaccharides
,”
J. Comput. Chem.
29
,
2543
2564
(
2008
).
58.
O.
Guvench
,
E.
Hatcher
,
R. M.
Venable
,
R. W.
Pastor
, and
A. D. J.
MacKerell
, “
CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses
,”
J. Chem. Theory Comput.
5
,
2353
2370
(
2009
).
59.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
60.
B. R.
Brooks
,
C. L.
Brooks
III
,
A. D.
Mackerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
,
A.
Caflisch
,
L.
Caves
,
Q.
Cui
,
A. R.
Dinner
,
M.
Feig
,
S.
Fischer
,
J.
Gao
,
M.
Hodoscek
,
W.
Im
,
K.
Kuczera
,
T.
Lazaridis
,
J.
Ma
,
V.
Ovchinnikov
,
E.
Paci
,
R. W.
Pastor
,
C. B.
Post
,
J. Z.
Pu
,
M.
Schaefer
,
B.
Tidor
,
R. M.
Venable
,
H. L.
Woodcock
,
X.
Wu
,
W.
Yang
,
D. M.
York
, and
M.
Karplus
, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
1614
(
2009
).
61.
P.
Gallo
,
M. A.
Ricci
, and
M.
Rovere
, “
Layer analysis of the structure of water confined in vycor glass
,”
J. Chem. Phys.
116
,
342
346
(
2002
).
62.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
63.
P.
Gallo
,
M.
Rapinesi
, and
M.
Rovere
, “
Confined water in the low hydration regime
,”
J. Chem. Phys.
117
,
369
375
(
2002
).
64.
P.
Gallo
, “
Single particle slow dynamics of confined water
,”
Phys. Chem. Chem. Phys.
2
,
1607
1611
(
2000
).
65.
A. R.
Bizzarri
,
A.
Paciaroni
, and
S.
Cannistraro
, “
Glasslike dynamical behavior of the plastocyanin hydration water
,”
Phys. Rev. E
62
,
3991
3999
(
2000
).
66.
F.
Venturini
,
P.
Gallo
,
M. A.
Ricci
,
A. R.
Bizzarri
, and
S.
Cannistraro
, “
Study of the β relaxation in supercooled confined water
,”
Philos. Mag. B
82
,
507
515
(
2002
).
67.
P.
Kumar
,
K. T.
Wikfeldt
,
D.
Schlesinger
,
L. G. M.
Pettersson
, and
H. E.
Stanley
, “
The boson peak in supercooled water
,”
Sci. Rep.
3
,
1980
(
2013
).
68.
L.
Tenuzzo
,
G.
Camisasca
, and
P.
Gallo
, “
Protein-water and water-water long-time relaxations in protein hydration water upon cooling—A close look through density correlation functions
,”
Molecules
25
,
4570
(
2020
).
69.
G.
Schirò
,
M.
Fomina
, and
A.
Cupane
, “
Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water
,”
J. Chem. Phys.
139
,
121102
(
2013
).
70.
A. G.
Markelz
,
J. R.
Knab
,
J. Y.
Chen
, and
Y.
He
, “
Protein dynamical transition in terahertz dielectric response
,”
Chem. Phys. Lett.
442
,
413
417
(
2007
).
71.
K.
Wood
,
A.
Frölich
,
A.
Paciaroni
,
M.
Moulin
,
M.
Härtlein
,
G.
Zaccai
,
D. J.
Tobias
, and
M.
Weik
, “
Coincidence of dynamical transitions in a soluble protein and its hydration water: Direct measurements by neutron scattering and MD simulations
,”
J. Am. Chem. Soc.
130
,
4586
4587
(
2008
).
72.
G.
Schirò
,
Y.
Fichou
,
F.-X.
Gallat
,
K.
Wood
,
F.
Gabel
,
M.
Moulin
,
M.
Härtlein
,
M.
Heyden
,
J.-P.
Colletier
,
A.
Orecchini
,
A.
Paciaroni
,
J.
Wuttke
,
D. J.
Tobias
, and
M.
Weik
, “
Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins
,”
Nat. Commun.
6
,
6490
(
2015
).
73.
P.
Kumar
,
Z.
Yan
,
L.
Xu
,
M. G.
Mazza
,
S. V.
Buldyrev
,
S.-H.
Chen
,
S.
Sastry
, and
H. E.
Stanley
, “
Glass transition in biomolecules and the liquid-liquid critical point of water
,”
Phys. Rev. Lett.
97
,
177802
(
2006
).
74.
A.
Paciaroni
,
S.
Cinelli
, and
G.
Onori
, “
Effect of the environment on the protein dynamical transition: A neutron scattering study
,”
Biophys. J.
83
,
1157
1164
(
2002
).
75.
L.
Zhang
,
L.
Wang
,
Y.-T.
Kao
,
W.
Qiu
,
Y.
Yang
,
O.
Okobiah
, and
D.
Zhong
, “
Mapping hydration dynamics around a protein surface
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
18461
18466
(
2007
).
76.
T.
Li
,
A. A.
Hassanali
,
Y.-T.
Kao
,
D.
Zhong
, and
S. J.
Singer
, “
Hydration dynamics and time scales of coupled water–protein fluctuations
,”
J. Am. Chem. Soc.
129
,
3376
3382
(
2007
).
77.
A.
Paciaroni
,
E.
Cornicchi
,
M.
Marconi
,
A.
Orecchini
,
C.
Petrillo
,
M.
Haertlein
,
M.
Moulin
, and
F.
Sacchetti
, “
Coupled relaxations at the protein–water interface in the picosecond time scale
,”
J. R. Soc., Interface
6
,
S635
S640
(
2009
).
78.
D.
Ringe
and
G. A.
Petsko
, “
The ‘glass transition’ in protein dynamics: What it is, why it occurs, and how to exploit it
,”
Biophys. Chem.
105
,
667
680
(
2003
), part of the Special Issue: Walter Kauzmann’s 85th Birthday.
79.
P. W.
Fenimore
,
H.
Frauenfelder
,
B. H.
McMahon
, and
R. D.
Young
, “
Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
14408
14413
(
2004
).
80.
B. F.
Rasmussen
,
A. M.
Stock
,
D.
Ringe
, and
G. A.
Petsko
, “
Crystalline ribonuclease a loses function below the dynamical transition at 220 K
,”
Nature
357
,
423
424
(
1992
).
81.
V.
Réat
,
R.
Dunn
,
M.
Ferrand
,
J. L.
Finney
,
R. M.
Daniel
, and
J. C.
Smith
, “
Solvent dependence of dynamic transitions in protein solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
9961
9966
(
2000
).
82.
K.
Amann-Winkel
,
M.-C.
Bellissent-Funel
,
L. E.
Bove
,
T.
Loerting
,
A.
Nilsson
,
A.
Paciaroni
,
D.
Schlesinger
, and
L.
Skinner
, “
X-ray and neutron scattering of water
,”
Chem. Rev.
116
,
7570
7589
(
2016
).
83.
S.
Corezzi
,
E.
Campani
,
P. A.
Rolla
,
S.
Capaccioli
, and
D.
Fioretto
, “
Changes in the dynamics of supercooled systems revealed by dielectric spectroscopy
,”
J. Chem. Phys.
111
,
9343
9351
(
1999
).
You do not currently have access to this content.