Simulations of photochemical reaction dynamics have been a challenge to the theoretical chemistry community for some time. In an effort to determine the predictive character of current approaches, we predict the results of an upcoming ultrafast diffraction experiment on the photodynamics of cyclobutanone after excitation to the lowest lying Rydberg state (S2). A picosecond of nonadiabatic dynamics is described with ab initio multiple spawning. We use both time dependent density functional theory (TDDFT) and equation-of-motion coupled cluster singles and doubles (EOM-CCSD) theory for the underlying electronic structure theory. We find that the lifetime of the S2 state is more than a picosecond (with both TDDFT and EOM-CCSD). The predicted ultrafast electron diffraction spectrum exhibits numerous structural features, but weak time dependence over the course of the simulations.

1.
E.
Teller
, “
The crossing of potential surfaces
,”
J. Phys. Chem.
41
,
109
116
(
1937
).
2.
D. R.
Yarkony
, “
Diabolical conical intersections
,”
Rev. Mod. Phys.
68
,
985
(
1996
).
3.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
4379
(
2018
).
4.
M.
Véril
,
A.
Scemama
,
M.
Caffarel
,
F.
Lipparini
,
M.
Boggio-Pasqua
,
D.
Jacquemin
, and
P.-F.
Loos
, “
QUESTDB: A database of highly accurate excitation energies for the electronic structure community
,”
WIREs Comput. Mol. Sci.
11
,
e1517
(
2021
).
5.
J.
Liang
,
X.
Feng
,
D.
Hait
, and
M.
Head-Gordon
, “
Revisiting the performance of time-dependent density functional theory for electronic excitations: Assessment of 43 popular and recently developed functionals from rungs one to four
,”
J. Chem. Theory Comput.
18
,
3460
3473
(
2022
).
6.
B. F.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
,
3305
3336
(
2018
).
7.
R.
Crespo-Otero
and
M.
Barbatti
, “
Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics
,”
Chem. Rev.
118
,
7026
7068
(
2018
).
8.
H.
Timmers
,
X.
Zhu
,
Z.
Li
,
Y.
Kobayashi
,
M.
Sabbar
,
M.
Hollstein
,
M.
Reduzzi
,
T. J.
Martínez
,
D. M.
Neumark
, and
S. R.
Leone
, “
Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy
,”
Nat. Commun.
10
,
3133
(
2019
).
9.
T. J.
Wolf
,
D. M.
Sanchez
,
J.
Yang
,
R.
Parrish
,
J.
Nunes
,
M.
Centurion
,
R.
Coffee
,
J.
Cryan
,
M.
Gühr
,
K.
Hegazy
et al, “
The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction
,”
Nat. Chem.
11
,
504
509
(
2019
).
10.
J.
Yang
,
X.
Zhu
,
J. P.
F Nunes
,
J. K.
Yu
,
R. M.
Parrish
,
T. J.
Wolf
,
M.
Centurion
,
M.
Gühr
,
R.
Li
,
Y.
Liu
et al, “
Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction
,”
Science
368
,
885
889
(
2020
).
11.
K. S.
Zinchenko
,
F.
Ardana-Lamas
,
I.
Seidu
,
S. P.
Neville
,
J.
van der Veen
,
V. U.
Lanfaloni
,
M. S.
Schuurman
, and
H. J.
Wörner
, “
Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge
,”
Science
371
,
489
494
(
2021
).
12.
E.
Ridente
,
D.
Hait
,
E. A.
Haugen
,
A. D.
Ross
,
D. M.
Neumark
,
M.
Head-Gordon
, and
S. R.
Leone
, “
Femtosecond symmetry breaking and coherent relaxation of methane cations via x-ray spectroscopy
,”
Science
380
,
713
717
(
2023
).
13.
W. J.
Glover
,
T.
Mori
,
M. S.
Schuurman
,
A. E.
Boguslavskiy
,
O.
Schalk
,
A.
Stolow
, and
T. J.
Martínez
, “
Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations
,”
J. Chem. Phys.
148
,
164303
(
2018
).
14.
H.
Tao
,
T. K.
Allison
,
T. W.
Wright
,
A. M.
Stooke
,
C.
Khurmi
,
J.
van Tilborg
,
Y.
Liu
,
R. W.
Falcone
,
A.
Belkacem
, and
T. J.
Martinez
, “
Ultrafast internal conversion in ethylene. I. The excited state lifetime
,”
J. Chem. Phys.
134
,
244306
(
2011
).
15.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martinez
, “
Role of Rydberg states in the photochemical dynamics of ethylene
,”
J. Phys. Chem. A
116
,
2808
2818
(
2012
).
16.
T.
Kobayashi
,
T.
Horio
, and
T.
Suzuki
, “
Ultrafast deactivation of the ππ*(V) state of ethylene studied using sub-20 fs time-resolved photoelectron imaging
,”
J. Phys. Chem. A
119
,
9518
9523
(
2015
).
17.
R.
Norrish
and
C.
Bamford
, “
Photodecomposition of aldehydes and ketones
,”
Nature
138
,
1016
(
1936
).
18.
E. W.-G.
Diau
,
C.
Kötting
, and
A. H.
Zewail
, “
Femtochemistry of norrish type-I reactions: II. The anomalous predissociation dynamics of cyclobutanone on the S1 surface
,”
ChemPhysChem
2
,
294
309
(
2001
).
19.
M.-H.
Kao
,
R. K.
Venkatraman
,
M. N.
Ashfold
, and
A. J.
Orr-Ewing
, “
Effects of ring-strain on the ultrafast photochemistry of cyclic ketones
,”
Chem. Sci.
11
,
1991
2000
(
2020
).
20.
S.-H.
Xia
,
X.-Y.
Liu
,
Q.
Fang
, and
G.
Cui
, “
Excited-state ring-opening mechanism of cyclic ketones: A MS-CASPT2//CASSCF study
,”
J. Phys. Chem. A
119
,
3569
3576
(
2015
).
21.
L.
Liu
and
W.-H.
Fang
, “
New insights into photodissociation dynamics of cyclobutanone from the aims dynamic simulation
,”
J. Chem. Phys.
144
,
144317
(
2016
).
22.
M.
Centurion
,
T. J.
Wolf
, and
J.
Yang
, “
Ultrafast imaging of molecules with electron diffraction
,”
Annu. Rev. Phys. Chem.
73
,
21
42
(
2022
).
23.
J.
Janos
and
P.
Slavicek
, “
What controls the quality of photodynamical simulations? Electronic structure versus nonadiabatic algorithm
,”
J. Chem. Theory Comput.
19
,
8273
8284
(
2023
).
24.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
25.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
26.
O.
Christiansen
,
H.
Koch
, and
P.
Jo/rgensen
, “
Response functions in the CC3 iterative triple excitation model
,”
J. Chem. Phys.
103
,
7429
7441
(
1995
).
27.
H.
Koch
,
O.
Christiansen
,
P.
Jo/rgensen
,
A. M.
Sanchez de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
1818
(
1997
).
28.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods: (Part I)
(
World Scientific
,
1995
), pp.
155
192
.
29.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
30.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
1051
(
2006
).
31.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
32.
D.
Hait
,
A.
Rettig
, and
M.
Head-Gordon
, “
Beyond the Coulson–Fischer point: Characterizing single excitation CI and TDDFT for excited states in single bond dissociations
,”
Phys. Chem. Chem. Phys.
21
,
21761
21775
(
2019
).
33.
C.
Hättig
, “
Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2)
,”
Adv. Quantum Chem.
50
,
37
(
2005
), part of Special Issue: Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul Jørgensen)
34.
A.
Köhn
and
A.
Tajti
, “
Can coupled-cluster theory treat conical intersections?
,”
J. Chem. Phys.
127
,
044105
(
2007
).
35.
E. F.
Kjønstad
,
R. H.
Myhre
,
T. J.
Martínez
, and
H.
Koch
, “
Crossing conditions in coupled cluster theory
,”
J. Chem. Phys.
147
,
164105
(
2017
).
36.
D. M.
Williams
,
E. F.
Kjønstad
, and
T. J.
Martinez
, “
Geometric phase in coupled cluster theory
,”
J. Chem. Phys.
158
,
214122
(
2023
).
37.
E. F.
Kjønstad
and
H.
Koch
, “
Resolving the notorious case of conical intersections for coupled cluster dynamics
,”
J. Phys. Chem. Lett.
8
,
4801
4807
(
2017
).
38.
E. F.
Kjønstad
and
H.
Koch
, “
An orbital invariant similarity constrained coupled cluster model
,”
J. Chem. Theory Comput.
15
,
5386
5397
(
2019
).
39.
H.
Keller-Rudek
,
G. K.
Moortgat
,
R.
Sander
, and
R.
Sörensen
, “
The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest
,”
Earth Syst. Sci. Data
5
,
365
373
(
2013
).
40.
A.
Udvarhazi
and
M.
El-Sayed
, “
Vacuum-ultraviolet spectra of cyclic ketones
,”
J. Chem. Phys.
42
,
3335
3336
(
1965
).
41.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
, “
Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics
,”
J. Phys. Chem. A
104
,
5161
5175
(
2000
).
42.
M.
Ben-Nun
and
T. J.
Martínez
, “
Ab initio quantum molecular dynamics
,”
Adv. Chem. Phys.
121
,
439
512
(
2002
).
43.
M. A.
Rohrdanz
and
J. M.
Herbert
, “
Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory
,”
J. Chem. Phys.
129
(
2008
).
44.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
45.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
46.
S.
Seritan
,
C.
Bannwarth
,
B. S.
Fales
,
E. G.
Hohenstein
,
C. M.
Isborn
,
S. I.
Kokkila-Schumacher
,
X.
Li
,
F.
Liu
,
N.
Luehr
,
J. W.
Snyder
, Jr.
et al, “
TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics
,”
WIREs Comput. Mol. Sci.
11
,
e1494
(
2021
).
47.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation
,”
J. Chem. Theory Comput.
4
,
222
231
(
2008
).
48.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation
,”
J. Chem. Theory Comput.
5
,
1004
1015
(
2009
).
49.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
50.
D. J.
Tozer
and
N. C.
Handy
, “
Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities
,”
J. Chem. Phys.
109
,
10180
10189
(
1998
).
51.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
52.
D.
Rappoport
and
F.
Furche
, “
Property-optimized Gaussian basis sets for molecular response calculations
,”
J. Chem. Phys.
133
,
134105
(
2010
).
53.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
,”
J. Chem. Phys.
54
,
724
728
(
1971
).
54.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self—Consistent molecular orbital methods. XII. Further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
55.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
56.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
, “
Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F
,”
J. Comput. Chem.
4
,
294
301
(
1983
).
57.
S. D.
Folkestad
,
E. F.
Kjønstad
,
R. H.
Myhre
,
J. H.
Andersen
,
A.
Balbi
,
S.
Coriani
,
T.
Giovannini
,
L.
Goletto
,
T. S.
Haugland
,
A.
Hutcheson
et al, “
eT 1.0: An open source electronic structure program with emphasis on coupled cluster and multilevel methods
,”
J. Chem. Phys.
152
,
184103
(
2020
).
58.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
, and
T. J.
Martinez
, “
Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions
,”
J. Chem. Phys.
137
,
22101
(
2012
).
59.
E. G.
Hohenstein
,
S. I. L.
Kokkila
,
R. M.
Parrish
, and
T. J.
Martinez
, “
Tensor hypercontraction equation-of-motion second-order approximate coupled cluster: Electronic excitation energies in O(N4) time
,”
J. Phys. Chem. B
117
,
12972
12978
(
2013
).
60.
R. M.
Parrish
,
Y.
Zhao
,
E. G.
Hohenstein
, and
T. J.
Martinez
, “
Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions
,”
J. Chem. Phys.
150
,
164118
(
2019
).
61.
E. G.
Hohenstein
,
Y.
Zhao
,
R. M.
Parrish
, and
T. J.
Martinez
, “
Rank reduced coupled cluster theory. II. Equation-of-motion coupled-cluster singles and doubles
,”
J. Chem. Phys.
151
,
164121
(
2019
).
62.
E. G.
Hohenstein
,
B. S.
Fales
,
R. M.
Parrish
, and
T. J.
Martinez
, “
Rank-reduced coupled-cluster. III. Tensor hypercontraction of the doubles amplitudes
,”
J. Chem. Phys.
156
,
054102
(
2022
).
63.
K. K.
Baeck
and
T. J.
Martinez
, “
Ab initio molecular dynamics with equation-of-motion coupled-cluster theory: Electronic absorption spectrum of ethylene
,”
Chem. Phys. Lett.
375
,
299
308
(
2003
).
64.
A. K.
Schnack-Petersen
,
H.
Koch
,
S.
Coriani
, and
E. F.
Kjønstad
, “
Efficient implementation of molecular CCSD gradients with Cholesky-decomposed electron repulsion integrals
,”
J. Chem. Phys.
156
,
244111
(
2022
).
65.
E. F.
Kjønstad
and
H.
Koch
, “
Communication: Non-adiabatic derivative coupling elements for the coupled cluster singles and doubles model
,”
J. Chem. Phys.
158
,
161106
(
2023
).
66.
E. F.
Kjønstad
,
O. J.
Fajen
,
A. C.
Paul
,
S.
Angelico
,
D.
Mayer
,
M.
Gühr
,
T. J.
Wolf
,
T. J.
Martínez
, and
H.
Koch
, “
Unexpected hydrogen dissociation in thymine: predictions from a novel coupled cluster theory
,” arXiv:2403.01045 (
2024
).
67.
A.
Tajti
and
P. G.
Szalay
, “
Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory
,”
J. Chem. Phys.
131
,
124104
(
2009
).
68.
S.
Faraji
,
S.
Matsika
, and
A. I.
Krylov
, “
Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods
,”
J. Chem. Phys.
148
,
044103
(
2018
).
69.
B.
Efron
and
R.
Tibshirani
, “
Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
,”
Stat. Sci.
1
,
54
75
(
1986
).
70.
E. F.
Kjønstad
,
S.
Angelico
, and
H.
Koch
, “
Coupled cluster theory for nonadiabatic dynamics: nuclear gradients and nonadiabatic couplings in similarity constrained coupled cluster theory
,” arXiv:2403.01007 (
2024
).
71.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Nudged elastic band method for finding minimum energy paths of transitions
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
1998
), pp.
385
404
.
72.
T. S.
Kuhlman
,
W. J.
Glover
,
T.
Mori
,
K. B.
Møller
, and
T. J.
Martínez
, “
Between ethylene and polyenes - the non-adiabatic dynamics of cis-dienes
,”
Faraday Discuss.
157
,
193
212
(
2012
).
73.
J.
Baker
, “
An algorithm for the location of transition states
,”
J. Comput. Chem.
7
,
385
395
(
1986
).
74.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
, “
DL-FIND: An open-source geometry optimizer for atomistic simulations
,”
J. Phys. Chem. A
113
,
11856
11865
(
2009
).
75.
S.
Metz
,
J.
Kästner
,
A. A.
Sokol
,
T. W.
Keal
, and
P.
Sherwood
, “
ChemShell—A modular software package for QM/MM simulations
,”
WIREs Comput. Mol. Sci.
4
,
101
110
(
2014
).
76.
P.
Sherwood
,
A. H.
de Vries
,
M. F.
Guest
,
G.
Schreckenbach
,
C. A.
Catlow
,
S. A.
French
,
A. A.
Sokol
,
S. T.
Bromley
,
W.
Thiel
,
A. J.
Turner
et al, “
QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis
,”
J. Mol. Struct.: THEOCHEM
632
,
1
28
(
2003
).
77.
F.
Salvat
,
A.
Jablonski
, and
C. J.
Powell
, “
ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules
,”
Comput. Phys. Commun.
165
,
157
190
(
2005
).
78.
T. S.
Kuhlman
,
T. I.
Sølling
, and
K. B.
Møller
, “
Coherent motion reveals non-ergodic nature of internal conversion between excited states
,”
ChemPhysChem
13
,
820
827
(
2012
).
79.
A.
Stolow
,
A. E.
Bragg
, and
D. M.
Neumark
, “
Femtosecond time-resolved photoelectron spectroscopy
,”
Chem. Rev.
104
,
1719
1758
(
2004
).
80.
H. R.
Hudock
,
B. G.
Levine
,
A. L.
Thompson
,
H.
Satzger
,
D.
Townsend
,
N.
Gador
,
S.
Ullrich
,
A.
Stolow
, and
T. J.
Martínez
, “
Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine
,”
J. Phys. Chem. A
111
,
8500
8508
(
2007
).
81.
C.
Melania Oana
and
A. I.
Krylov
, “
Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples
,”
J. Chem. Phys.
127
,
234106
(
2007
).
82.
R. M.
Parrish
and
T. J.
Martinez
, “
Ab initio computation of rotationally-averaged pump-probe X-ray and electron diffraction signals
,”
J. Chem. Theory Comput.
15
,
1523
1537
(
2019
).
83.
H.
Yong
,
N.
Zotev
,
J. M.
Ruddock
,
B.
Stankus
,
M.
Simmermacher
,
A. M.
Carrascosa
,
W.
Du
,
N.
Goff
,
Y.
Chang
,
D.
Bellshaw
,
M.
Liang
,
S.
Carbajo
,
J. E.
Koglin
,
J. S.
Robinson
,
S.
Boutet
,
M. P.
Minitti
,
A.
Kirrander
, and
P. M.
Weber
, “
Observation of the molecular response to light upon photoexcitation
,”
Nat. Commun.
11
,
2157
(
2020
).
84.
E. G.
Champenois
,
N. H.
List
,
M.
Ware
,
M.
Britton
,
P. H.
Bucksbaum
,
X.
Cheng
,
M.
Centurion
,
J. P.
Cryan
,
R.
Forbes
,
I.
Gabalski
,
K.
Hegazy
,
M. C.
Hoffmann
,
A. J.
Howard
,
F.
Ji
,
M.-F.
Lin
,
J. P. F.
Nunes
,
X.
Shen
,
J.
Yang
,
X.
Wang
,
T. J.
Martinez
, and
T. J. A.
Wolf
, “
Femtosecond electronic and hydrogen structural dynamics in ammonia imaged with ultrafast electron diffraction
,”
Phys. Rev. Lett.
131
,
143001
(
2023
).
85.
K.
Tamagawa
and
R.
Hilderbrandt
, “
Molecular structure of cyclobutanone as determined by combined analysis of electron diffraction and spectroscopic data
,”
J. Phys. Chem.
87
,
5508
5516
(
1983
).
86.
D.
Hait
,
D.
Lahana
,
O. J.
Fajen
,
A. S. P.
Paz
,
P. A.
Unzueta
,
B.
Rana
,
L.
Lu
,
Y.
Wang
,
E. F.
Kjønstad
,
H.
Koch
, and
T. J.
Martinez
(
2024
). “
Raw data for prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning
,” 10.5281/zenodo.11159627.
You do not currently have access to this content.