Zinc tungstate is a semiconductor known for its favorable photocatalytic, photoluminescence, and scintillation properties, coupled with its relatively low cost, reduced toxicity, and high stability in biological and catalytic environments. In particular, zinc tungstate evinces scintillation properties, namely the ability to emit visible light upon absorption of energetic radiation such as x rays, which has led to applications not only as radiation detectors but also for biomedical applications involving the delivery of optical light to deep tissue, such as photodynamic therapy and optogenetics. Here, we report on the synthesis of zinc tungstate nanorods generated via an optimized but facile method, which allows for synthetic control over the aspect ratio of the as-synthesized anisotropic motifs via rational variation of the solution pH. We investigate the effect of aspect ratio on their resulting photoluminescent and radioluminescent properties. We further demonstrate the potential of these zinc tungstate nanorods for biomedical applications, such as photodynamic therapy for cancer treatment, by analyzing their toxicological profile within cell lines and neurons.

1.
D. W.
Kim
,
I.-S.
Cho
,
S. S.
Shin
,
S.
Lee
,
T. H.
Noh
,
D. H.
Kim
,
H. S.
Jung
, and
K. S.
Hong
, “
Electronic band structures and photovoltaic properties of MWO4 (M = Zn, Mg, Ca, Sr) compounds
,”
J. Solid State Chem.
184
(
8
),
2103
2107
(
2011
).
2.
V. B.
Mikhailik
and
H.
Kraus
, “
Performance of scintillation materials at cryogenic temperatures: Performance of scintillation materials at cryogenic temperatures
,”
Phys. Status Solidi B
247
(
7
),
1583
1599
(
2010
).
3.
L.
Zhang
,
Z.
Wang
,
L.
Wang
,
Y.
Xing
,
X.
Li
, and
Y.
Zhang
, “
Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery
,”
Appl. Surf. Sci.
305
,
179
185
(
2014
).
4.
M. T.
Tourchi Moghadam
,
M.
Seifi
,
F.
Jamali
,
S.
Azizi
, and
M. B.
Askari
, “
ZnWO4-CNT as a superior electrode material for ultra-high capacitance supercapacitor
,”
Surf. Interfaces
32
,
102134
(
2022
).
5.
A.
Soultati
,
A.
Verykios
,
T.
Speliotis
,
M.
Fakis
,
I.
Sakellis
,
H.
Jaouani
,
D.
Davazoglou
,
P.
Argitis
, and
M.
Vasilopoulou
, “
Organic solar cells of enhanced efficiency and stability using zinc oxide:zinc tungstate nanocomposite as electron extraction layer
,”
Org. Electron.
71
,
227
237
(
2019
).
6.
N. A.
Shad
,
S. Z.
Bajwa
,
N.
Amin
,
A.
Taj
,
S.
Hameed
,
Y.
Khan
,
Z.
Dai
,
C.
Cao
, and
W. S.
Khan
, “
Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol
,”
J. Hazard. Mater.
367
,
205
214
(
2019
).
7.
R.
Rajakumaran
,
A.
Krishnapandi
,
S.-M.
Chen
,
K.
Balamurugan
,
F. M.
Chang
, and
S.
Sakthinathan
, “
Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples
,”
Microchem. J.
160
,
105750
(
2021
).
8.
O. B. D.
Macedo
,
A. L. M. D.
Oliveira
, and
I. M. G. D.
Santos
, “
Zinc tungstate: A review on its application as heterogeneous photocatalyst
,”
Cerâmica
68
(
387
),
294
315
(
2022
).
9.
H. L.
Abubakar
,
J. O.
Tijani
,
S. A.
Abdulkareem
,
A.
Mann
, and
S.
Mustapha
, “
A review on the applications of zinc tungstate (ZnWO4) photocatalyst for wastewater treatment
,”
Heliyon
8
(
7
),
e09964
(
2022
).
10.
G.
Zhang
,
M.
Guo
,
H.
Ma
,
J.
Wang
, and
X.-D.
Zhang
, “
Catalytic nanotechnology of X-ray photodynamics for cancer treatments
,”
Biomater. Sci.
11
(
4
),
1153
1181
(
2023
).
11.
B.
Sun
,
J. Y.
Teo
,
J.
Wu
, and
Y.
Zhang
, “
Light conversion nanomaterials for wireless phototherapy
,”
Acc. Chem. Res.
56
(
10
),
1143
1155
(
2023
).
12.
W.
Sun
,
L.
Luo
,
Y.
Feng
,
Y.
Cai
,
Y.
Zhuang
,
R.
Xie
,
X.
Chen
, and
H.
Chen
, “
Aggregation‐induced emission gold clustoluminogens for enhanced low‐dose X‐ray‐induced photodynamic therapy
,”
Angew. Chem.
132
(
25
),
10000
10007
(
2020
).
13.
W.
Zhang
,
X.
Zhang
,
Y.
Shen
,
F.
Shi
,
C.
Song
,
T.
Liu
,
P.
Gao
,
B.
Lan
,
M.
Liu
,
S.
Wang
,
L.
Fan
, and
H.
Lu
, “
Ultra-high FRET efficiency NaGdF4: Tb3+-Rose Bengal biocompatible nanocomposite for X-ray excited photodynamic therapy application
,”
Biomaterials
184
,
31
40
(
2018
).
14.
A.
Nsubuga
,
G. A.
Mandl
, and
J. A.
Capobianco
, “
Investigating the reactive oxygen species production of Rose Bengal and merocyanine 540-loaded radioluminescent nanoparticles
,”
Nanoscale Adv.
3
(
5
),
1375
1381
(
2021
).
15.
K.
Ni
,
G.
Lan
,
S. S.
Veroneau
,
X.
Duan
,
Y.
Song
, and
W.
Lin
, “
Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy
,”
Nat. Commun.
9
(
1
),
4321
(
2018
).
16.
K.
Lu
,
C.
He
,
N.
Guo
,
C.
Chan
,
K.
Ni
,
G.
Lan
,
H.
Tang
,
C.
Pelizzari
,
Y.-X.
Fu
,
M. T.
Spiotto
,
R. R.
Weichselbaum
, and
W.
Lin
, “
Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy
,”
Nat. Biomed. Eng.
2
(
8
),
600
610
(
2018
).
17.
X.
Yu
,
X.
Liu
,
W.
Wu
,
K.
Yang
,
R.
Mao
,
F.
Ahmad
,
X.
Chen
, and
W.
Li
, “
CT/MRI‐Guided synergistic radiotherapy and X‐ray inducible photodynamic therapy using Tb‐doped Gd‐W‐nanoscintillators
,”
Angew. Chem.
131
(
7
),
2039
2044
(
2019
).
18.
T.
Matsubara
and
T.
Yamashita
, “
Remote optogenetics using up/down-conversion phosphors
,”
Front. Mol. Biosci.
8
,
771717
(
2021
).
19.
Y.
Liu
,
Z.
Yi
,
Y.
Yao
,
B.
Guo
, and
X.
Liu
, “
Noninvasive manipulation of ion channels for neuromodulation and theranostics
,”
Acc. Mater. Res.
3
(
2
),
247
258
(
2022
).
20.
Z.
Chen
,
V.
Tsytsarev
,
Y. Z.
Finfrock
,
O. A.
Antipova
,
Z.
Cai
,
H.
Arakawa
,
F. W.
Lischka
,
B. M.
Hooks
,
R.
Wilton
,
D.
Wang
,
Y.
Liu
,
B.
Gaitan
,
Y.
Tao
,
Y.
Chen
,
R. S.
Erzurumlu
,
H.
Yang
, and
E. A.
Rozhkova
, “
Wireless optogenetic modulation of cortical neurons enabled by radioluminescent nanoparticles
,”
ACS Nano
15
(
3
),
5201
5208
(
2021
).
21.
G. V.
Geetha
,
R.
Sivakumar
,
C.
Sanjeeviraja
, and
V.
Ganesh
, “
Photocatalytic degradation of methylene blue dye using ZnWO4 catalyst prepared by a simple Co-precipitation technique
,”
J. Sol-Gel Sci. Technol.
97
(
3
),
572
580
(
2021
).
22.
S.-J.
Chen
,
J.-H.
Zhou
,
X.-T.
Chen
,
J.
Li
,
L.-H.
Li
,
J.-M.
Hong
,
Z.
Xue
, and
X.-Z.
You
, “
Fabrication of nanocrystalline ZnWO4 with different morphologies and sizes via hydrothermal route
,”
Chem. Phys. Lett.
375
(
1–2
),
185
190
(
2003
).
23.
N. A.
Neto
,
T. B. O.
Nunes
,
M.
Li
,
E.
Longo
,
M. R. D.
Bomio
, and
F. V.
Motta
, “
Influence of microwave-assisted hydrothermal treatment time on the crystallinity, morphology and optical properties of ZnWO4 nanoparticles: Photocatalytic activity
,”
Ceram. Int.
46
(
2
),
1766
1774
(
2020
).
24.
N. S.
Pavithra
,
G.
Nagaraju
, and
S. B.
Patil
, “
Ionic liquid-assisted hydrothermal synthesis of ZnWO4 nanoparticles used for photocatalytic applications
,”
Ionics
27
(
8
),
3533
3541
(
2021
).
25.
J.
Ungelenk
,
M.
Speldrich
,
R.
Dronskowski
, and
C.
Feldmann
, “
Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe, Co, Ni, Cu, Zn)
,”
Solid State Sci.
31
,
62
69
(
2014
).
26.
Y.-X.
Zhou
,
L.
Tong
,
X.-B.
Chen
, and
X.-H.
Zeng
, “
Ethylene glycol-assisted solvothermal fabrication of ZnWO4 nanostructures with tunable size, optical properties, and photocatalytic activities
,”
Appl. Phys. A
117
(
2
),
673
679
(
2014
).
27.
Y.
Wang
,
L.
Liping
, and
G.
Li
, “
Solvothermal synthesis, characterization and photocatalytic performance of Zn-rich ZnWO4 nanocrystals
,”
Appl. Surf. Sci.
393
,
159
167
(
2017
).
28.
C.
Jaramillo-Páez
,
J. A.
Navío
,
F.
Puga
, and
M. C.
Hidalgo
, “
Sol-gel synthesis of ZnWO4-(ZnO) composite materials. Characterization and photocatalytic properties
,”
J. Photochem. Photobiol., A
404
,
112962
(
2021
).
29.
K. M.
Garadkar
,
L. A.
Ghule
,
K. B.
Sapnar
, and
S. D.
Dhole
, “
A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis
,”
Mater. Res. Bull.
48
(
3
),
1105
1109
(
2013
).
30.
Z.
Amouzegar
,
R.
Naghizadeh
,
H. R.
Rezaie
,
M.
Ghahari
, and
M.
Aminzare
, “
Microwave engineering of ZnWO4 nanostructures: Towards morphologically favorable structures for photocatalytic activity
,”
Ceram. Int.
41
(
7
),
8352
8359
(
2015
).
31.
P. F. S.
Pereira
,
A. F.
Gouveia
,
M.
Assis
,
R. C.
De Oliveira
,
I. M.
Pinatti
,
M.
Penha
,
R. F.
Gonçalves
,
L.
Gracia
,
J.
Andrés
, and
E.
Longo
, “
ZnWO4 nanocrystals: Synthesis, morphology, photoluminescence and photocatalytic properties
,”
Phys. Chem. Chem. Phys.
20
(
3
),
1923
1937
(
2018
).
32.
M.
Li
,
X.
Wang
,
Q.
Zhu
,
J.-G.
Li
, and
B.-N.
Kim
, “
Crystallization and architecture engineering of ZnWO4 for enhanced photoluminescence
,”
CrystEngComm
22
(
38
),
6398
6406
(
2020
).
33.
A. G.
Yakubovskaya
,
K. A.
Katrunov
,
I. A.
Tupitsyna
,
N. G.
Starzhinskiy
,
L. L.
Nagornaya
,
A. V.
Zhukov
,
I. M.
Zenya
,
V. N.
Baumer
, and
O. M.
Vovk
, “
Nanocrystalline zinc and cadmium tungstates: Morphology, luminescent and scintillation properties
,”
Funct. Mater.
18
(
4
),
445
451
(
2011
).
34.
G.
Suarato
,
S.-I.
Lee
,
W.
Li
,
S.
Rao
,
T.
Khan
,
Y.
Meng
, and
M.
Shelly
, “
Micellar nanocomplexes for biomagnetic delivery of intracellular proteins to dictate axon formation during neuronal development
,”
Biomaterials
112
,
176
191
(
2017
).
35.
C.
Arshadi
,
U.
Günther
,
M.
Eddison
,
K. I. S.
Harrington
, and
T. A.
Ferreira
, “
SNT: A unifying toolbox for quantification of neuronal anatomy
,”
Nat. Methods
18
(
4
),
374
377
(
2021
).
36.
M.
Li
,
Q.
Meng
,
S.
Li
,
F.
Li
,
Q.
Zhu
,
B.-N.
Kim
, and
J.-G.
Li
, “
Photoluminescent and photocatalytic ZnWO4 nanorods via controlled hydrothermal reaction
,”
Ceram. Int.
45
(
8
),
10746
10755
(
2019
).
37.
P.
Siriwong
,
T.
Thongtem
,
A.
Phuruangrat
, and
S.
Thongtem
, “
Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods
,”
CrystEngComm
13
(
5
),
1564
1569
(
2011
).
38.
S. M.
Hosseinpour-Mashkani
,
M.
Maddahfar
, and
A.
Sobhani-Nasab
, “
Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles
,”
J. Electron. Mater.
45
(
7
),
3612
3620
(
2016
).
39.
M.
Hojamberdiev
,
G.
Zhu
, and
Y.
Xu
, “
Template-free synthesis of ZnWO4 powders via hydrothermal process in a wide pH range
,”
Mater. Res. Bull.
45
(
12
),
1934
1940
(
2010
).
40.
S.‐H.
Yu
,
B.
Liu
,
M.‐S.
Mo
,
J.‐H.
Huang
,
X.‐M.
Liu
, and
Y.‐T.
Qian
, “
General synthesis of single‐crystal tungstate nanorods/nanowires: A facile, lowtemperature solution approach
,”
Adv. Funct. Mater.
13
(
8
),
639
647
(
2003
).
41.
P.
Li
,
X.
Zhao
,
Y.
Li
,
H.
Sun
,
L.
Sun
,
X.
Cheng
,
X.
Hao
, and
W.
Fan
, “
Effects of surface chemistry on the morphology transformation of ZnWO4 nanocrystals: Investigated from experiment and theoretical calculations
,”
CrystEngComm
14
(
3
),
920
928
(
2012
).
42.
P.
Belli
,
R.
Bernabei
,
Y. A.
Borovlev
,
F.
Cappella
,
V.
Caracciolo
,
R.
Cerulli
,
F. A.
Danevich
,
V. Y.
Degoda
,
A.
Incicchitti
,
D. V.
Kasperovych
,
Y. P.
Kogut
,
A.
Leoncini
,
G. P.
Podust
,
A. G.
Postupaeva
, and
V. N.
Shlegel
, “
Optical, luminescence, and scintillation properties of advanced ZnWO4 crystal scintillators
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1029
,
166400
(
2022
).
43.
W.
Yan
,
X.
Liu
,
S.
Hou
, and
X.
Wang
, “
Study on micro-nanocrystalline structure control and performance of ZnWO4 photocatalysts
,”
Catal. Sci. Technol.
9
(
5
),
1141
1153
(
2019
).
44.
C. J.
Santos
,
D. C.
Ferreira Soares
,
C. D. A.
Ferreira
,
A. L. B.
De Barros
,
A. D.
Silva Cunha Junior
, and
F. M.
Filho
, “
Antiangiogenic evaluation of ZnWO4 nanoparticles synthesised through microwave-assisted hydrothermal method
,”
J. Drug Targeting
26
(
9
),
806
817
(
2018
).
45.
K. M.
Dunnick
,
M. A.
Badding
,
D.
Schwegler-Berry
,
J. M.
Patete
,
C.
Koenigsmann
,
S. S.
Wong
, and
S. S.
Leonard
, “
The effect of tungstate nanoparticles on reactive oxygen species and cytotoxicity in raw 264.7 mouse monocyte macrophage cells
,”
J. Toxicol. Environ. Health, Part A
77
(
20
),
1251
1268
(
2014
).
46.
H.
Wei
,
D.
Ding
,
X.
Yan
,
J.
Guo
,
L.
Shao
,
H.
Chen
,
L.
Sun
,
H. A.
Colorado
,
S.
Wei
, and
Z.
Guo
, “
Tungsten trioxide/zinc tungstate bilayers: Electrochromic behaviors, energy storage and electron transfer
,”
Electrochimica Acta
132
,
58
66
(
2014
).
You do not currently have access to this content.