The curvature of soft interfaces plays a crucial role in determining their mechanical and thermodynamic properties, both at macroscopic and microscopic scales. In the case of air/water interfaces, particular attention has recently focused on water microdroplets, due to their distinctive chemical reactivity. However, the specific impact of curvature on the molecular properties of interfacial water and interfacial reactivity has so far remained elusive. Here, we use molecular dynamics simulations to determine the effect of curvature on a broad range of structural, dynamical, and thermodynamical properties of the interface. For a droplet, a flat interface, and a cavity, we successively examine the structure of the hydrogen-bond network and its relation to vibrational spectroscopy, the dynamics of water translation, rotation, and hydrogen-bond exchanges, and the thermodynamics of ion solvation and ion-pair dissociation. Our simulations show that curvature predominantly impacts the hydrogen-bond structure through the fraction of dangling OH groups and the dynamics of interfacial water molecules. In contrast, curvature has a limited effect on solvation and ion-pair dissociation thermodynamics. For water microdroplets, this suggests that the curvature alone cannot fully account for the distinctive reactivity measured in these systems, which are of great importance for catalysis and atmospheric chemistry.

1.
S.
Cerveny
,
F.
Mallamace
,
J.
Swenson
,
M.
Vogel
, and
L.
Xu
, “
Confined water as model of supercooled water
,”
Chem. Rev.
116
,
7608
7625
(
2016
).
2.
S. M. A.
Malek
,
P. H.
Poole
, and
I.
Saika-Voivod
, “
Thermodynamic and structural anomalies of water nanodroplets
,”
Nat. Commun.
9
,
2402
(
2018
).
3.
M. F.
Ruiz-Lopez
,
J. S.
Francisco
,
M. T.
Martins-Costa
, and
J. M.
Anglada
, “
Molecular reactions at aqueous interfaces
,”
Nat. Rev. Chem.
4
,
459
475
(
2020
).
4.
Z.
Wei
,
Y.
Li
,
R. G.
Cooks
, and
X.
Yan
, “
Accelerated reaction kinetics in microdroplets: Overview and recent developments
,”
Annu. Rev. Phys. Chem.
71
,
31
51
(
2020
).
5.
N.
Aluru
,
F.
Aydin
,
M.
Bazant
,
D.
Blankschtein
,
A.
Brozena
,
J.
de Souza
,
M.
Elimelech
,
S.
Faucher
,
J.
Fourkas
,
V.
Koman
,
M.
Kuehne
,
H.
Kulik
,
H.
Li
,
Y.
Li
,
Z.
Li
,
A.
Majumdar
,
J.
Martis
,
R.
Misra
,
A.
Noy
,
T.
Pham
,
H.
Qu
,
A.
Rayabharam
,
M.
Reed
,
C.
Ritt
,
E.
Schwegler
,
Z.
Siwy
,
M.
Strano
,
Y.
Wang
,
Y.
Yao
,
C.
Zhan
, and
Z.
Zhang
, “
Fluids and electrolytes under confinement in single-digit nanopores
,”
Chem. Rev.
123
,
2737
2831
(
2023
).
6.
S.
Narayan
,
J.
Muldoon
,
M. G.
Finn
,
V. V.
Fokin
,
H. C.
Kolb
, and
K. B.
Sharpless
, “
“On water”: Unique reactivity of organic compounds in aqueous suspension
,”
Angew. Chem., Int. Ed.
44
,
3275
3279
(
2005
).
7.
R. M.
Bain
,
S.
Sathyamoorthi
, and
R. N.
Zare
, “
“on-droplet” chemistry: The cycloaddition of diethyl azodicarboxylate and quadricyclane
,”
Angew. Chem., Int. Ed.
56
,
15083
15087
(
2017
).
8.
S.
Enami
,
Y.
Sakamoto
, and
A. J.
Colussi
, “
Fenton chemistry at aqueous interfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
623
628
(
2014
).
9.
L.
Qiu
,
Z.
Wei
,
H.
Nie
, and
R. G.
Cooks
, “
Reaction acceleration promoted by partial solvation at the gas/solution interface
,”
ChemPlusChem
86
,
1362
1365
(
2021
).
10.
M.
de la Puente
,
R.
David
,
A.
Gomez
, and
D.
Laage
, “
Acids at the edge: Why nitric and formic acid dissociations at air-water interfaces depend on depth and on interface specific area
,”
J. Am. Chem. Soc.
144
,
10524
10529
(
2022
).
11.
M.
de la Puente
and
D.
Laage
, “
How the acidity of water droplets and films is controlled by the air-water interface
,”
J. Am. Chem. Soc.
145
,
25186
25194
(
2023
).
12.
D.
Ben-Amotz
, “
Interfacial chemical reactivity enhancement
,”
J. Chem. Phys.
160
,
084704
(
2024
).
13.
M. F.
Ruiz-López
and
M. T. C.
Martins-Costa
, “
Disentangling reaction rate acceleration in microdroplets
,”
Phys. Chem. Chem. Phys.
24
,
29700
29704
(
2022
).
14.
J. K.
Lee
,
H. S.
Han
,
S.
Chaikasetsin
,
D. P.
Marron
,
R. M.
Waymouth
,
F. B.
Prinz
, and
R. N.
Zare
, “
Condensing water vapor to droplets generates hydrogen peroxide
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
30934
30941
(
2020
).
15.
H.
Xiong
,
J.
Lee
,
R.
Zare
, and
W.
Min
, “
Strong electric field observed at the interface of aqueous microdroplets
,”
J. Phys. Chem. Lett.
11
,
7423
7428
(
2020
).
16.
H.
Hao
,
I.
Leven
, and
T.
Head-Gordon
, “
Can electric fields drive chemistry for an aqueous microdroplet?
,”
Nat. Commun.
13
,
280
(
2022
).
17.
M.
Riva
,
J.
Sun
,
V. F.
McNeill
,
C.
Ragon
,
S.
Perrier
,
Y.
Rudich
,
S. A.
Nizkorodov
,
J.
Chen
,
F.
Caupin
,
T.
Hoffmann
, and
C.
George
, “
High pressure inside nanometer-sized particles influences the rate and products of chemical reactions
,”
Environ. Sci. Technol.
55
,
7786
7793
(
2021
).
18.
S. S.
Petters
, “
Constraints on the role of Laplace pressure in multiphase reactions and viscosity of organic aerosols
,”
Geophys. Res. Lett.
49
,
e2022GL098959
, (
2022
).
19.
R. C.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
20.
A.
Sanfeld
,
K.
Sefiane
,
D.
Benielli
, and
A.
Steinchen
, “
Does capillarity influence chemical reaction in drops and bubbles? A thermodynamic approach
,”
Adv. Colloid Interface Sci.
86
,
153
193
(
2000
).
21.
A.
Sanfeld
and
A.
Steinchen
, “
Does the size of small objects influence chemical reactivity in living systems?
,”
C. R. Biol.
326
,
141
147
(
2003
).
22.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
, “
Hydrophobicity at small and large length scales
,”
J. Phys. Chem. B
103
,
4570
4577
(
1999
).
23.
S.
Rajamani
,
T. M.
Truskett
, and
S.
Garde
, “
Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
9475
9480
(
2005
).
24.
I. V.
Stiopkin
,
C.
Weeraman
,
P. A.
Pieniazek
,
F. Y.
Shalhout
,
J. L.
Skinner
, and
A. V.
Benderskii
, “
Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy
,”
Nature
474
,
192
195
(
2011
).
25.
S.
Pullanchery
,
S.
Kulik
, and
S.
Roke
, “
Water structure at the hydrophobic nanodroplet surface revealed by vibrational sum frequency scattering using isotopic dilution
,”
J. Phys. Chem. B
126
,
3186
3192
(
2022
).
26.
N.
Smolentsev
,
W. J.
Smit
,
H. J.
Bakker
, and
S.
Roke
, “
The interfacial structure of water droplets in a hydrophobic liquid
,”
Nat. Commun.
8
,
15548
(
2017
).
27.
A. P.
Willard
and
D.
Chandler
, “
Instantaneous liquid interfaces
,”
J. Phys. Chem. B
114
,
1954
1958
(
2010
).
28.
G.
Ruocco
,
M.
Sampoli
,
A.
Torcini
, and
R.
Vallauri
, “
Molecular dynamics results for stretched water
,”
J. Chem. Phys.
99
,
8095
8104
(
1993
).
29.
H. E.
Stanley
,
M.
Barbosa
,
S.
Mossa
,
P.
Netz
,
F.
Sciortino
,
F. W.
Starr
, and
M.
Yamada
, “
Statistical physics and liquid water at negative pressures
,”
Physica A
315
,
281
289
(
2002
).
30.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
31.
C.
Vega
and
E.
de Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
,
154707
(
2007
).
32.
B. M.
Auer
and
J. L.
Skinner
, “
Vibrational sum-frequency spectroscopy of the water liquid/vapor interface
,”
J. Phys. Chem. B
113
,
4125
4130
(
2009
).
33.
Y.
Ni
and
J.
Skinner
, “
Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited
,”
J. Chem. Phys.
145
,
031103
(
2016
).
34.
J.
Schmidt
,
S.
Roberts
,
J.
Loparo
,
A.
Tokmakoff
,
M.
Fayer
, and
J.
Skinner
, “
Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?
,”
Chem. Phys.
341
,
143
157
(
2007
).
35.
J. R.
Schmidt
,
S. A.
Corcelli
, and
J. L.
Skinner
, “
Pronounced non-Condon effects in the ultrafast infrared spectroscopy of water
,”
J. Chem. Phys.
123
,
044513
(
2005
).
36.
I. S.
Joung
and
T. E.
Cheatham
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
37.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
38.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
39.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
40.
H. C.
Andersen
, “
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
,
24
34
(
1983
).
41.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(1st ed.) (
CRC Press
,
Boca Raton, FL
,
1988
).
42.
I.-C.
Yeh
and
M. L.
Berkowitz
, “
Ewald summation for systems with slab geometry
,”
J. Chem. Phys.
111
,
3155
3162
(
1999
).
43.
G. M.
Torrie
and
J. P.
Valleau
, “
Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid
,”
Chem. Phys. Lett.
28
,
578
581
(
1974
).
44.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
45.
B.
Roux
, “
The calculation of the potential of mean force using computer simulations
,”
Comput. Phys. Commun.
91
,
275
282
(
1995
).
46.
F.
Zhu
and
G.
Hummer
, “
Convergence and error estimation in free energy calculations using the weighted histogram analysis method
,”
J. Comput. Chem.
33
,
453
465
(
2012
).
47.
M.
Sega
,
S. S.
Kantorovich
,
P.
Jedlovszky
, and
M.
Jorge
, “
The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces
,”
J. Chem. Phys.
138
,
044110
(
2013
).
48.
L. B.
Pártay
,
G.
Hantal
,
P.
Jedlovszky
,
A.
Vincze
, and
G.
Horvai
, “
A new method for determining the interfacial molecules and characterizing the surface roughness in computer simulations. Application to the liquid-vapor interface of water
,”
J. Comput. Chem.
29
,
945
956
(
2008
).
49.
Y.-K.
Cheng
and
P. J.
Rossky
, “
Surface topography dependence of biomolecular hydrophobic hydration
,”
Nature
392
,
696
699
(
1998
).
50.
P. N.
Perera
,
K. R.
Fega
,
C.
Lawrence
,
E. J.
Sundstrom
,
J.
Tomlinson-Phillips
, and
D.
Ben-Amotz
, “
Observation of water dangling OH bonds around dissolved nonpolar groups
,”
Proc. Nat. Acad. Sci. U. S. A.
106
,
12230
12234
(
2009
).
51.
T.
Ishiyama
,
H.
Takahashi
, and
A.
Morita
, “
Molecular dynamics simulations of surface-specific bonding of the hydrogen network of water: A solution to the low sum-frequency spectra
,”
Phys. Rev. B
86
,
035408
(
2012
).
52.
S.
Ruiz-Barragan
,
D.
Muñoz-Santiburcio
, and
D.
Marx
, “
Nanoconfined water within graphene slit pores adopts distinct confinement-dependent regimes
,”
J. Phys. Chem. Lett.
10
,
329
334
(
2019
).
53.
Y.
Zhang
,
G.
Stirnemann
,
J. T.
Hynes
, and
D.
Laage
, “
Water dynamics at electrified graphene interfaces: A jump model perspective
,”
Phys. Chem. Chem. Phys.
22
,
10581
10591
(
2020
).
54.
Y.
Zhang
,
H. B.
de Aguiar
,
J. T.
Hynes
, and
D.
Laage
, “
Water structure, dynamics, and sum-frequency generation spectra at electrified graphene interfaces
,”
J. Phys. Chem. Lett.
11
,
624
631
(
2020
).
55.
V.
Subasinghege Don
,
R.
David
,
P.
Du
,
A.
Milet
, and
R.
Kumar
, “
Interfacial water at graphene oxide surface: Ordered or disordered
,”
J. Phys. Chem. B
123
,
1636
1649
(
2019
).
56.
S.
Xiao
,
F.
Figge
,
G.
Stirnemann
,
D.
Laage
, and
J. A.
McGuire
, “
Orientational dynamics of water at an extended hydrophobic interface
,”
J. Am. Chem. Soc.
138
,
5551
5560
(
2016
).
57.
F.
Tang
,
T.
Ohto
,
T.
Hasegawa
,
W. J.
Xie
,
L.
Xu
,
M.
Bonn
, and
Y.
Nagata
, “
Definition of free O-H groups of water at the air-water interface
,”
J. Chem. Theory Comput.
14
,
357
364
(
2018
).
58.
P.
Jedlovszky
,
M.
Předota
, and
I.
Nezbeda
, “
Hydration of apolar solutes of varying size: A systematic study
,”
Mol. Phys.
104
,
2465
2476
(
2006
).
59.
D.
Matyushov
, “
Electrophoretic mobility of nanoparticles in water
,”
J. Phys. Chem. B
128
,
2930
(
2024
).
60.
A.
Graciaa
,
G.
Morel
,
P.
Saulner
,
J.
Lachaise
, and
R.
Schechter
, “
The ζ-potential of gas bubbles
,”
J. Colloid Interface Sci.
172
,
131
136
(
1995
).
61.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
, “
Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation
,”
Annu. Rev. Phys. Chem.
64
,
579
603
(
2013
).
62.
H. B.
de Aguiar
,
J.-S.
Samson
, and
S.
Roke
, “
Probing nanoscopic droplet interfaces in aqueous solution with vibrational sum-frequency scattering: A study of the effects of path length, droplet density and pulse energy
,”
Chem. Phys. Lett.
512
,
76
80
(
2011
).
63.
R.
Vácha
,
S. W.
Rick
,
P.
Jungwirth
,
A. G. F.
de Beer
,
H. B.
de Aguiar
,
J.-S.
Samson
, and
S.
Roke
, “
The orientation and charge of water at the hydrophobic oil droplet-water interface
,”
J. Am. Chem. Soc.
133
,
10204
10210
(
2011
).
64.
S. M.
Gruenbaum
,
C. J.
Tainter
,
L.
Shi
,
Y.
Ni
, and
J. L.
Skinner
, “
Robustness of frequency, transition dipole, and coupling maps for water vibrational spectroscopy
,”
J. Chem. Theory Comput.
9
,
3109
3117
(
2013
).
65.
S.
Iuchi
,
A.
Morita
, and
S.
Kato
, “
Molecular dynamics simulation with the charge response Kernel: vibrational spectra of liquid water and N-methylacetamide in aqueous solution
,”
J. Phys. Chem. B
106
,
3466
3476
(
2002
).
66.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
, “
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function
,”
J. Chem. Phys.
143
,
124702
(
2015
).
67.
G.
Sommers
,
M.
Calegari Andrade
,
L.
Zhang
,
H.
Wang
, and
R.
Car
, “
Raman spectrum and polarizability of liquid water from deep neural networks
,”
Phys. Chem. Chem. Phys.
22
,
10592
10602
(
2020
).
68.
M.
de la Puente
,
A.
Gomez
, and
D.
Laage
, “
Neural network-based sum-frequency generation spectra of pure and acidified water interfaces with air
,”
J. Phys. Chem. Lett.
15
,
3096
3102
(
2024
).
69.
B.
Auer
,
R.
Kumar
,
J. R.
Schmidt
, and
J. L.
Skinner
, “
Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
14215
14220
(
2007
).
70.
S.
Pullanchery
,
S.
Kulik
,
B.
Rehl
,
A.
Hassanali
, and
S.
Roke
, “
Charge transfer across C–H⋯O hydrogen bonds stabilizes oil droplets in water
,”
Science
374
,
1366
1370
(
2021
).
71.
A.
Gomez
,
Z. A.
Piskulich
,
W. H.
Thompson
, and
D.
Laage
, “
Water diffusion proceeds via a hydrogen-bond jump exchange mechanism
,”
J. Phys. Chem. Lett.
13
,
4660
4666
(
2022
).
72.
D.
Laage
and
J. T.
Hynes
, “
A molecular jump mechanism of water reorientation
,”
Science
311
,
832
835
(
2006
).
73.
G.
Stirnemann
,
P.
Rossky
,
J.
Hynes
, and
D.
Laage
, “
Water reorientation, hydrogen-bond dynamics and 2D-IR spectroscopy next to an extended hydrophobic surface
,”
Faraday Discuss.
146
,
263
281
(
2010
).
74.
G.
Stirnemann
,
S. R.
Castrillón
,
J. T.
Hynes
,
P. J.
Rossky
,
P. G.
Debenedetti
, and
D.
Laage
, “
Non-monotonic dependence of water reorientation dynamics on surface hydrophilicity: Competing effects of the hydration structure and hydrogen-bond strength
,”
Phys. Chem. Chem. Phys.
13
,
19911
19917
(
2011
).
75.
P.
Liu
,
E.
Harder
, and
B. J.
Berne
, “
On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid−vapor interface of water
,”
J. Phys. Chem. B
108
,
6595
6602
(
2004
).
76.
F.
Pizzitutti
,
M.
Marchi
,
F.
Sterpone
, and
P. J.
Rossky
, “
How protein surfaces induce anomalous dynamics of hydration water
,”
J. Phys. Chem. B
111
,
7584
7590
(
2007
).
77.
B.
Fábián
,
M.
Sega
,
G.
Horvai
, and
P.
Jedlovszky
, “
Single particle dynamics at the intrinsic surface of various apolar, aprotic dipolar, and hydrogen bonding liquids as seen from computer simulations
,”
J. Phys. Chem. B
121
,
5582
5594
(
2017
).
78.
H.-S.
Tan
,
I. R.
Piletic
, and
M. D.
Fayer
, “
Orientational dynamics of water confined on a nanometer length scale in reverse micelles
,”
J. Chem. Phys.
122
,
174501
(
2005
).
79.
Y. L. A.
Rezus
and
H. J.
Bakker
, “
On the orientational relaxation of HDO in liquid water
,”
J. Chem. Phys.
123
,
114502
(
2005
).
80.
C. J.
Fecko
,
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
, “
Local hydrogen bonding dynamics and collective reorganization in water: Ultrafast infrared spectroscopy of HOD/D2O
,”
J. Chem. Phys.
122
,
054506
(
2005
).
81.
D.
Laage
and
J. T.
Hynes
, “
On the molecular mechanism of water reorientation
,”
J. Phys. Chem. B
112
,
14230
14242
(
2008
).
82.
A.
Fogarty
,
E.
Duboué-Dijon
,
F.
Sterpone
,
J.
Hynes
, and
D.
Laage
, “
Biomolecular hydration dynamics: A jump model perspective
,”
Chem. Soc. Rev.
42
,
5672
5683
(
2013
).
83.
E.
Duboué-Dijon
,
A.
Fogarty
,
J.
Hynes
, and
D.
Laage
, “
Dynamical disorder in the DNA hydration shell
,”
J. Am. Chem. Soc.
138
,
7610
7620
(
2016
).
84.
D.
Laage
,
G.
Stirnemann
, and
J. T.
Hynes
, “
Why water reorientation slows without iceberg formation around hydrophobic solutes
,”
J. Phys. Chem. B
113
,
2428
2435
(
2009
).
85.
P.
Jungwirth
and
D. J.
Tobias
, “
Ions at the air/water interface
,”
J. Phys. Chem. B
106
,
6361
6373
(
2002
).
86.
Y.
Marcus
and
G.
Hefter
, “
Ion pairing
,”
Chem. Rev.
106
,
4585
4621
(
2006
).
87.
W. C.
Duer
,
R. A.
Robinson
, and
R. G.
Bates
, “
Molar conductivity of sodium fluoride in aqueous solution at 25 °C. Applications of Pitts’ conductivity equation
,”
J. Chem. Soc., Faraday Trans. 1
68
,
716
722
(
1972
).
88.
L. X.
Dang
,
G. K.
Schenter
, and
C. D.
Wick
, “
Rate theory of ion pairing at the water liquid-vapor interface
,”
J. Phys. Chem. C
121
,
10018
10026
(
2017
).
89.
L.
Fumagalli
,
A.
Esfandiar
,
R.
Fabregas
,
S.
Hu
,
P.
Ares
,
A.
Janardanan
,
Q.
Yang
,
B.
Radha
,
T.
Taniguchi
,
K.
Watanabe
,
G.
Gomila
,
K. S.
Novoselov
, and
A. K.
Geim
, “
Anomalously low dielectric constant of confined water
,”
Science
360
,
1339
1342
(
2018
).
90.
S.
Ruiz-Barragan
,
D.
Muñoz-Santiburcio
,
S.
Körning
, and
D.
Marx
, “
Quantifying anisotropic dielectric response properties of nanoconfined water within graphene slit pores
,”
Phys. Chem. Chem. Phys.
22
,
10833
10837
(
2020
).
91.
M. H.
Motevaselian
and
N. R.
Aluru
, “
Universal reduction in dielectric response of confined fluids
,”
ACS Nano
14
,
12761
12770
(
2020
).
92.
J.-F.
Olivieri
,
J. T.
Hynes
, and
D.
Laage
, “
Confined water’s dielectric constant reduction is due to the surrounding low dielectric media and not to interfacial molecular ordering
,”
J. Phys. Chem. Lett.
12
,
4319
4326
(
2021
).
93.
D.
Borgis
,
D.
Laage
,
L.
Belloni
, and
G.
Jeanmairet
, “
Dielectric response of confined water films from a classical density functional theory perspective
,”
Chem. Sci.
14
,
11141
11150
(
2023
).
94.
R.
Heyrovská
, “
Volumes of ions, ion pairs, and electrostriction of alkali halides in aqueous solutions at 25 °C
,”
Mar. Chem.
70
,
49
59
(
2000
).
You do not currently have access to this content.