Charged molecules play essential roles in many natural and artificial functional processes, ranging from photosynthesis to photovoltaics to chemical reactions and more. It is often difficult to identify the optical dynamic properties of relevant redox species because they cannot be easily prepared, their spectra overlap, or they evolve on a femtosecond timescale. Here, we address these challenges by combining spectroelectrochemistry, ultrafast transient absorption spectroscopy, and suitable data analysis. We illustrate the method with the various redox species of a cyclophane composed of two perylene bisimide subunits. While singular-value decomposition is a well-established tool in the analysis of time-dependent spectra of a single molecular species, we here use it additionally to separate transient maps of individual redox species. This is relevant because at any specific applied electrochemical potential, several redox species coexist in the ensemble, and our procedure allows disentangling their spectroscopic response. In the second step, global analysis is then employed to retrieve the excited-state lifetimes and decay-associated difference spectra. Our approach is generally suitable for unraveling ultrafast dynamics in materials featuring charge-transfer processes.

1.
R.
Schmidt
,
J. H.
Oh
,
Y.-S.
Sun
,
M.
Deppisch
,
A.-M.
Krause
,
K.
Radacki
,
H.
Braunschweig
,
M.
Könemann
,
P.
Erk
,
Z.
Bao
, and
F.
Würthner
, “
High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors
,”
J. Am. Chem. Soc.
131
(
17
),
6215
6228
(
2009
).
2.
B. A.
Jones
,
A.
Facchetti
,
M. R.
Wasielewski
, and
T. J.
Marks
, “
Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport
,”
J. Am. Chem. Soc.
129
(
49
),
15259
15278
(
2007
).
3.
G.
Li
,
Y.
Zhao
,
J.
Li
,
J.
Cao
,
J.
Zhu
,
X. W.
Sun
, and
Q.
Zhang
, “
Synthesis, characterization, physical properties, and OLED application of single Bn-fused perylene diimide
,”
J. Org. Chem.
80
(
1
),
196
203
(
2015
).
4.
S. V.
Dayneko
,
M.
Rahmati
,
M.
Pahlevani
, and
G. C.
Welch
, “
Solution processed red organic light-emitting-diodes using an N-annulated perylene diimide fluorophore
,”
J. Mater. Chem. C
8
(
7
),
2314
2319
(
2020
).
5.
F.
Brust
,
O.
Nagler
,
K.
Shoyama
,
M.
Stolte
, and
F.
Würthner
, “
Organic light-emitting diodes based on silandiol-bay-bridged perylene bisimides
,”
Adv. Opt. Mater.
11
(
5
),
2202676
(
2023
).
6.
X.
Zhan
,
Z.
Tan
,
E.
Zhou
,
Y.
Li
,
R.
Misra
,
A.
Grant
,
B.
Domercq
,
X.-H.
Zhang
,
Z.
An
,
X.
Zhang
,
S.
Barlow
,
B.
Kippelen
, and
S. R.
Marder
, “
Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors
,”
J. Mater. Chem.
19
(
32
),
5794
5803
(
2009
).
7.
B.
Mahlmeister
,
R.
Renner
,
O.
Anhalt
,
M.
Stolte
, and
F.
Würthner
, “
Axially chiral bay-tetraarylated perylene bisimide dyes as non-fullerene acceptors in organic solar cells
,”
J. Mater. Chem. C
10
(
7
),
2581
2591
(
2022
).
8.
A.
Nowak-Król
and
F.
Würthner
, “
Progress in the synthesis of perylene bisimide dyes
,”
Org. Chem. Front.
6
(
8
),
1272
1318
(
2019
).
9.
F.
Würthner
,
C. R.
Saha-Möller
,
B.
Fimmel
,
S.
Ogi
,
P.
Leowanawat
, and
D.
Schmidt
, “
Perylene bisimide dye assemblies as archetype functional supramolecular materials
,”
Chem. Rev.
116
(
3
),
962
1052
(
2016
).
10.
C.
Rosso
,
G.
Filippini
, and
M.
Prato
, “
Use of perylene diimides in synthetic photochemistry
,”
Eur. J. Org Chem.
2021
(
8
),
1193
1200
.
11.
F.
Glaser
,
C.
Kerzig
, and
O. S.
Wenger
, “
Multi-photon excitation in photoredox catalysis: Concepts, applications, methods
,”
Angew. Chem., Int. Ed.
59
(
26
),
10266
10284
(
2020
).
12.
I.
Ghosh
,
T.
Ghosh
,
J. I.
Bardagi
, and
B.
König
, “
Reduction of aryl halides by consecutive visible light-induced electron transfer processes
,”
Science
346
(
6210
),
725
728
(
2014
).
13.
N. A.
Romero
and
D. A.
Nicewicz
, “
Organic photoredox catalysis
,”
Chem. Rev.
116
(
17
),
10075
10166
(
2016
).
14.
M.
Marchini
,
A.
Gualandi
,
L.
Mengozzi
,
P.
Franchi
,
M.
Lucarini
,
P. G.
Cozzi
,
V.
Balzani
, and
P.
Ceroni
, “
Mechanistic insights into two-photon-driven photocatalysis in organic synthesis
,”
Phys. Chem. Chem. Phys.
20
(
12
),
8071
8076
(
2018
).
15.
H.-X.
Gong
,
Z.
Cao
,
M.-H.
Li
,
S.-H.
Liao
, and
M.-J.
Lin
, “
Photoexcited perylene diimide radical anions for the reduction of aryl halides: A bay-substituent effect
,”
Org. Chem. Front.
5
(
15
),
2296
2302
(
2018
).
16.
C. J.
Zeman
,
S.
Kim
,
F.
Zhang
, and
K. S.
Schanze
, “
Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion
,”
J. Am. Chem. Soc.
142
(
5
),
2204
2207
(
2020
).
17.
C.
Lu
,
M.
Fujitsuka
,
A.
Sugimoto
, and
T.
Majima
, “
Unprecedented intramolecular electron transfer from excited perylenediimide radical anion
,”
J. Phys. Chem. C
120
(
23
),
12734
12741
(
2016
).
18.
L.
Zeng
,
T.
Liu
,
C.
He
,
D.
Shi
,
F.
Zhang
, and
C.
Duan
, “
Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via consecutive visible light-induced electron-transfer processes
,”
J. Am. Chem. Soc.
138
(
12
),
3958
3961
(
2016
).
19.
H.
Li
and
O. S.
Wenger
, “
Photophysics of perylene diimide dianions and their application in photoredox catalysis
,”
Angew. Chem., Int. Ed.
61
(
5
),
e202110491
(
2022
).
20.
Y.
Xu
,
J.
Zheng
,
J. O.
Lindner
,
X.
Wen
,
N.
Jiang
,
Z.
Hu
,
L.
Liu
,
F.
Huang
,
F.
Würthner
, and
Z.
Xie
, “
Consecutive charging of a perylene bisimide dye by multistep low-energy solar-light-induced electron transfer towards H2 evolution
,”
Angew. Chem., Int. Ed.
59
(
26
),
10363
10367
(
2020
).
21.
N. T.
La Porte
,
J. F.
Martinez
,
S.
Hedström
,
B.
Rudshteyn
,
B. T.
Phelan
,
C. M.
Mauck
,
R. M.
Young
,
V. S.
Batista
, and
M. R.
Wasielewski
, “
Photoinduced electron transfer from rylenediimide radical anions and dianions to Re(Bpy)(CO)3 using red and near-infrared light
,”
Chem. Sci.
8
(
5
),
3821
3831
(
2017
).
22.
M.
Bonchio
,
Z.
Syrgiannis
,
M.
Burian
,
N.
Marino
,
E.
Pizzolato
,
K.
Dirian
,
F.
Rigodanza
,
G. A.
Volpato
,
G.
La Ganga
,
N.
Demitri
,
S.
Berardi
,
H.
Amenitsch
,
D. M.
Guldi
,
S.
Caramori
,
C. A.
Bignozzi
,
A.
Sartorel
, and
M.
Prato
, “
Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation
,”
Nat. Chem.
11
(
2
),
146
153
(
2019
).
23.
R. E.
Blankenship
, Molecular Mechanisms of Photosynthesis, 2nd ed. (
Wiley Blackwell
,
Chichester
,
2014
).
24.
F.
Schlosser
,
M.
Moos
,
C.
Lambert
, and
F.
Würthner
, “
Redox-switchable intramolecular Π−π-stacking of perylene bisimide dyes in a cyclophane
,”
Adv. Mater.
25
(
3
),
410
414
(
2013
).
25.
R. M.
Young
,
S. M.
Dyar
,
J. C.
Barnes
,
M.
Juríček
,
J. F.
Stoddart
,
D. T.
Co
, and
M. R.
Wasielewski
, “
Ultrafast conformational dynamics of electron transfer in ExBox 4+ ⊂ perylene
,”
J. Phys. Chem. A
117
(
47
),
12438
12448
(
2013
).
26.
S. T. J.
Ryan
,
R. M.
Young
,
J. J.
Henkelis
,
N.
Hafezi
,
N. A.
Vermeulen
,
A.
Hennig
,
E. J.
Dale
,
Y.
Wu
,
M. D.
Krzyaniak
,
A.
Fox
,
W. M.
Nau
,
M. R.
Wasielewski
,
J. F.
Stoddart
, and
O. A.
Scherman
, “
Energy and electron transfer dynamics within a series of perylene diimide/cyclophane systems
,”
J. Am. Chem. Soc.
137
(
48
),
15299
15307
(
2015
).
27.
P.
Spenst
and
F.
Würthner
, “
A perylene bisimide cyclophane as a “turn-on” and “turn-off” fluorescence probe
,”
Angew. Chem., Int. Ed.
54
(
35
),
10165
10168
(
2015
).
28.
P.
Spenst
,
R. M.
Young
,
M. R.
Wasielewski
, and
F.
Würthner
, “
Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane
,”
Chem. Sci.
7
(
8
),
5428
5434
(
2016
).
29.
D.
Bialas
,
E.
Kirchner
,
M. I. S.
Röhr
, and
F.
Würthner
, “
Perspectives in dye chemistry: A rational approach toward functional materials by understanding the aggregate state
,”
J. Am. Chem. Soc.
143
(
12
),
4500
4518
(
2021
).
30.
M. P.
Lijina
,
A.
Benny
,
E.
Sebastian
, and
M.
Hariharan
, “
Keeping the chromophores crossed: Evidence for null exciton splitting
,”
Chem. Soc. Rev.
52
(
19
),
6664
6679
(
2023
).
31.
A. F.
Coleman
,
M.
Chen
,
J.
Zhou
,
J. Y.
Shin
,
Y.
Wu
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Reversible symmetry-breaking charge separation in a series of perylenediimide cyclophanes
,”
J. Phys. Chem. C
124
(
19
),
10408
10419
(
2020
).
32.
Y.
El Khoury
,
L. J. G. W.
Van Wilderen
, and
J.
Bredenbeck
, “
Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide
,”
J. Chem. Phys.
142
(
21
),
212416
(
2015
).
33.
Y.
El Khoury
,
L. J. G. W.
Van Wilderen
,
T.
Vogt
,
E.
Winter
, and
J.
Bredenbeck
, “
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
,”
Rev. Sci. Instrum.
86
(
8
),
083102
(
2015
).
34.
D.
Lotti
,
P.
Hamm
, and
J. P.
Kraack
, “
Surface-sensitive spectro-electrochemistry using ultrafast 2D ATR IR spectroscopy
,”
J. Phys. Chem. C
120
(
5
),
2883
2892
(
2016
).
35.
S.
Bold
,
L.
Zedler
,
Y.
Zhang
,
J.
Massin
,
V.
Artero
,
M.
Chavarot-Kerlidou
, and
B.
Dietzek
, “
Electron transfer in a covalent dye–cobalt catalyst assembly—A transient absorption spectroelectrochemistry perspective
,”
Chem. Commun.
54
(
75
),
10594
10597
(
2018
).
36.
K. E.
Knowles
,
M. D.
Koch
, and
J. L.
Shelton
, “
Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: Spectroelectrochemistry, microscopy, and identification of thermal contributions
,”
J. Mater. Chem. C
6
(
44
),
11853
11867
(
2018
).
37.
R. A.
Scheidt
,
G. F.
Samu
,
C.
Janáky
, and
P. V.
Kamat
, “
Modulation of charge recombination in CsPbBr3 perovskite films with electrochemical bias
,”
J. Am. Chem. Soc.
140
(
1
),
86
89
(
2018
).
38.
L. M.
Kiefer
,
L. B.
Michocki
, and
K. J.
Kubarych
, “
Transmission mode 2D-IR spectroelectrochemistry of in situ electrocatalytic intermediates
,”
J. Phys. Chem. Lett.
12
(
15
),
3712
3717
(
2021
).
39.
J.
Heitmüller
,
K.
Eckstein
,
R.
Renner
,
M.
Stolte
,
T.
Hertel
,
F.
Würthner
, and
T.
Brixner
, “
Coherent two-dimensional electronic spectroelectrochemistry
,”
Spectrochim. Acta, Part A
253
,
119567
(
2021
).
40.
J.
Heitmüller
,
R.
Fröhlich
,
R.
Renner
,
F.
Würthner
, and
T.
Brixner
, “
Intersystem crossing of perylene bisimide neutral, radical anion, and dianion derivatives compared via ultrafast spectroelectrochemistry
,”
Phys. Chem. Chem. Phys.
25
(
26
),
17214
17229
(
2023
).
41.
A.
Honarfar
,
P.
Chabera
,
W.
Lin
,
J.
Meng
,
H.
Mourad
,
G.
Pankratova
,
L.
Gorton
,
K.
Zheng
, and
T.
Pullerits
, “
Ultrafast spectroelectrochemistry reveals photoinduced carrier dynamics in positively charged CdSe nanocrystals
,”
J. Phys. Chem. C
125
(
26
),
14332
14337
(
2021
).
42.
H.
Zhu
,
S.
Xiao
,
W.
Tu
,
S.
Yan
,
T.
He
,
X.
Zhu
,
Y.
Yao
,
Y.
Zhou
, and
Z.
Zou
, “
In situ determination of polaron-mediated ultrafast electron trapping in rutile TiO2 nanorod photoanodes
,”
J. Phys. Chem. Lett.
12
(
44
),
10815
10822
(
2021
).
43.
S.
Goia
,
M. A. P.
Turner
,
J. M.
Woolley
,
M. D.
Horbury
,
A. J.
Borrill
,
J. J.
Tully
,
S. J.
Cobb
,
M.
Staniforth
,
N. D. M.
Hine
,
A.
Burriss
,
J. V.
Macpherson
,
B. R.
Robinson
, and
V. G.
Stavros
, “
Ultrafast transient absorption spectroelectrochemistry: Femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple
,”
Chem. Sci.
13
(
2
),
486
496
(
2022
).
44.
C. W.
Cone
,
S.
Cho
,
J. L.
Lyon
,
D. M.
Eisele
,
J. P.
Rabe
,
K. J.
Stevenson
,
P. J.
Rossky
, and
D. A.
Vanden Bout
, “
Singular value decomposition analysis of spectroelectrochemical redox chemistry in supramolecular dye nanotubes
,”
J. Phys. Chem. C
115
(
30
),
14978
14987
(
2011
).
45.
S.
Dümmling
,
E.
Eichhorn
,
S.
Schneider
,
B.
Speiser
, and
M.
Würde
, “
Recycling of the supporting electrolyte tetra(n-butyl)ammonium hexafluorophosphate from used electrolyte solutions
,”
Curr. Sep.
15
,
53
56
(
1996
).
46.
H.
Gampp
,
M.
Maeder
,
C. J.
Meyer
, and
A. D.
Zuberbühler
, “
Calculation of equilibrium constants from multiwavelength spectroscopic data—I: Mathematical considerations
,”
Talanta
32
(
2
),
95
101
(
1985
).
47.
H.
Gampp
,
M.
Maeder
,
C. J.
Meyer
, and
A. D.
Zuberbühler
, “
Calculation of equilibrium constants from multiwavelength spectroscopic data—II: SPECFIT: Two User-friendly programs in basic and standard FORTRAN77
,”
Talanta
32
(
4
),
257
264
(
1985
).
48.
R.
Trebino
,“
Frequency-resolved optical gating
,” in
The Measurement of Ultrashort Laser Pulses
, 1st ed. (
Springer
,
New York
,
2002
).
49.
S.
Yan
and
H.-S.
Tan
, “
Phase cycling schemes for two-dimensional optical spectroscopy with a pump–probe beam geometry
,”
Chem. Phys.
360
(
1–3
),
110
115
(
2009
).
50.
J.
Rühe
,
D.
Bialas
,
P.
Spenst
,
A.-M.
Krause
, and
F.
Würthner
, “
Perylene bisimide cyclophanes: Structure–property relationships upon variation of the cavity size
,”
Org. Mater.
02
(
02
),
149
158
(
2020
).
51.
S. K.
Lee
,
Y.
Zu
,
A.
Herrmann
,
Y.
Geerts
,
K.
Müllen
, and
A. J.
Bard
, “
Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution
,”
J. Am. Chem. Soc.
121
(
14
),
3513
3520
(
1999
).
52.
R.
Renner
,
M.
Stolte
,
J.
Heitmüller
,
T.
Brixner
,
C.
Lambert
, and
F.
Würthner
, “
Substituent-dependent absorption and fluorescence properties of perylene bisimide radical anions and dianions
,”
Mater. Horiz.
9
(
1
),
350
359
(
2022
).
53.
F.
Würthner
,
A.
Sautter
,
D.
Schmid
, and
P. J. A.
Weber
, “
Fluorescent and electroactive cyclic assemblies from perylene tetracarboxylic acid bisimide ligands and metal phosphane triflates
,”
Chem. Eur. J.
7
(
4
),
894
902
(
2001
).
54.
D.
Gosztola
,
M. P.
Niemczyk
,
W.
Svec
,
A. S.
Lukas
, and
M. R.
Wasielewski
, “
Excited doublet states of electrochemically generated aromatic imide and diimide radical anions
,”
J. Phys. Chem. A
104
(
28
),
6545
6551
(
2000
).
55.
C.
Huang
,
S.
Barlow
, and
S. R.
Marder
, “
Perylene-3.4.9.10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics
,”
J. Org. Chem.
76
(
8
),
2386
2407
(
2011
).
56.
W.
Jiang
,
C.
Xiao
,
L.
Hao
,
Z.
Wang
,
H.
Ceymann
,
C.
Lambert
,
S.
Di Motta
, and
F.
Negri
, “
Localization/delocalization of charges in bay-linked perylene bisimides
,”
Chem.-Eur. J.
18
(
22
),
6764
6775
(
2012
).
57.
F. C.
Spano
, “
The spectral signatures of Frenkel polarons in H- and J-aggregates
,”
Acc. Chem. Res.
43
(
3
),
429
439
(
2010
).
58.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
, “
Global and target analysis of time-resolved spectra
,”
Biochim. Biophys. Acta, Bioenerg.
1657
(
2–3
),
82
104
(
2004
).
59.
J. J.
Snellenburg
,
S. P.
Laptenok
,
R.
Seger
,
K. M.
Mullen
, and
I. H. M. v.
Stokkum
, “
Glotaran: A java-based graphical user interface for the R package TIMP
,”
J. Stat. Software
49
(
3
),
1
22
(
2012
).
60.
K. M.
Mullen
and
I. H. M. v.
Stokkum
, “
TIMP: An R package for modeling multi-way spectroscopic measurements
,”
J. Stat. Software
18
(
3
),
1
46
(
2007
).
61.
Y.
Wu
,
R. M.
Young
,
M.
Frasconi
,
S. T.
Schneebeli
,
P.
Spenst
,
D. M.
Gardner
,
K. E.
Brown
,
F.
Würthner
,
J. F.
Stoddart
, and
M. R.
Wasielewski
, “
Ultrafast photoinduced symmetry-breaking charge separation and electron sharing in perylenediimide molecular triangles
,”
J. Am. Chem. Soc.
137
(
41
),
13236
13239
(
2015
).
62.
M.
Kasha
,
H. R.
Rawls
, and
M.
Ashraf El-Bayoumi
, “
The exciton model in molecular spectroscopy
,”
Pure Appl. Chem.
11
(
3–4
),
371
392
(
1965
).
63.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
(
1
),
425
463
(
2003
).
You do not currently have access to this content.