We formulate a thermodynamic theory applicable to both classical and quantum systems. These systems are depicted as thermodynamic system–bath models capable of handling isothermal, isentropic, thermostatic, and entropic processes. Our approach is based on the use of a dimensionless thermodynamic potential expressed as a function of the intensive and extensive thermodynamic variables. Using the principles of dimensionless minimum work and dimensionless maximum entropy derived from quasi-static changes of external perturbations and temperature, we obtain the Massieu–Planck potentials as entropic potentials and the Helmholtz–Gibbs potentials as free energy. These potentials can be interconverted through time-dependent Legendre transformations. Our results are verified numerically for an anharmonic Brownian system described in phase space using the low-temperature quantum Fokker–Planck equations in the quantum case and the Kramers equation in the classical case, both developed for the thermodynamic system–bath model. Thus, we clarify the conditions for thermodynamics to be valid even for small systems described by Hamiltonians and establish a basis for extending thermodynamics to non-equilibrium conditions.

1.
S.
Carnot
,
Reflexions sur la puissance motrice du feu
(
ChexzBachelier Libraire
,
Quai des Augustins, Paris
,
1824
).
2.
F.
Massieu
, “
Sur les fonctions caractéristiques des divers fluides
,”
C. R. Acad. Sci.
69
,
858
862
(
1869
).
3.
M.
Planck
,
Vorlesungen Uber Thermodynamik
(
De Gruyter
,
1922
).
4.
A.
Planes
and
E.
Vives
, “
Entropic formulation of statistical mechanics
,”
J. Stat. Phys.
106
,
827
850
(
2002
).
5.
E. A.
Guggenheim
,
Thermodynamics: An Advanced Treatment for Chemists and Physicists
(
North Holland
,
1986
).
6.
Y.
Oono
,
Perspectives on Statistical Thermodynamics
(
Cambridge University Press
,
2017
).
7.
C.
Darwin
and
R.
Fowler
, “
XLIV. On the partition of energy
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
44
,
450
479
(
1922
).
8.
H. T.
Quan
,
Y. D.
Wang
,
Y.-x.
Liu
,
C. P.
Sun
, and
F.
Nori
, “
Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits
,”
Phys. Rev. Lett.
97
,
180402
(
2006
).
9.
M.
Esposito
,
U.
Harbola
, and
S.
Mukamel
, “
Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems
,”
Rev. Mod. Phys.
81
,
1665
1702
(
2009
).
10.
M.
Campisi
,
P.
Hänggi
, and
P.
Talkner
, “
Colloquium: Quantum fluctuation relations: Foundations and applications
,”
Rev. Mod. Phys.
83
,
771
791
(
2011
).
11.
R.
Kosloff
and
A.
Levy
, “
Quantum heat engines and refrigerators: Continuous devices
,”
Annu. Rev. Phys. Chem.
65
,
365
393
(
2014
).
12.
M.
Esposito
,
M. A.
Ochoa
, and
M.
Galperin
, “
Nature of heat in strongly coupled open quantum systems
,”
Phys. Rev. B
92
,
235440
(
2015
).
13.
R.
Schmidt
,
M. F.
Carusela
,
J. P.
Pekola
,
S.
Suomela
, and
J.
Ankerhold
, “
Work and heat for two-level systems in dissipative environments: Strong driving and non-Markovian dynamics
,”
Phys. Rev. B
91
,
224303
(
2015
).
14.
R.
Uzdin
,
A.
Levy
, and
R.
Kosloff
, “
Equivalence of quantum heat machines, and quantum-thermodynamic signatures
,”
Phys. Rev. X
5
,
031044
(
2015
).
15.
R. S.
Whitney
, “
Non-Markovian quantum thermodynamics: Laws and fluctuation theorems
,”
Phys. Rev. B
98
,
085415
(
2018
).
16.
H. T.
Quan
,
Y.-x.
Liu
,
C. P.
Sun
, and
F.
Nori
, “
Quantum thermodynamic cycles and quantum heat engines
,”
Phys. Rev. E
76
,
031105
(
2007
).
17.
K.
Maruyama
,
F.
Nori
, and
V.
Vedral
, “
Colloquium: The physics of Maxwell’s demon and information
,”
Rev. Mod. Phys.
81
,
1
23
(
2009
).
18.
K.
Ono
,
S. N.
Shevchenko
,
T.
Mori
,
S.
Moriyama
, and
F.
Nori
, “
Analog of a quantum heat engine using a single-spin qubit
,”
Phys. Rev. Lett.
125
,
166802
(
2020
).
19.
M.
Campisi
,
P.
Hänggi
, and
P.
Talkner
, “
Colloquium: Quantum fluctuation relations: Foundations and applications
,”
Rev. Mod. Phys.
83
,
771
791
(
2011
).
20.
L. M.
Cangemi
,
V.
Cataudella
,
G.
Benenti
,
M.
Sassetti
, and
G.
De Filippis
, “
Violation of thermodynamics uncertainty relations in a periodically driven work-to-work converter from weak to strong dissipation
,”
Phys. Rev. B
102
,
165418
(
2020
).
21.
P.
Strasberg
and
A.
Winter
, “
First and second law of quantum thermodynamics: A consistent derivation based on a microscopic definition of entropy
,”
PRX Quantum
2
,
030202
(
2021
).
22.
C.
Cockrell
and
I. J.
Ford
, “
Stochastic thermodynamics in a non-markovian dynamical system
,”
Phys. Rev. E
105
,
064124
(
2022
).
23.
P.
Talkner
and
P.
Hänggi
, “
Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical
,”
Rev. Mod. Phys.
92
,
041002
(
2020
).
24.
R.
Dann
and
R.
Kosloff
, “
Unification of the first law of quantum thermodynamics
,”
New J. Phys.
25
,
043019
(
2023
).
25.
A.
Ferreri
,
V.
Macrì
,
F. K.
Wilhelm
,
F.
Nori
, and
D. E.
Bruschi
, “
Quantum field heat engine powered by phonon-photon interactions
,”
Phys. Rev. Res.
5
,
043274
(
2023
).
26.
S.
Sakamoto
and
Y.
Tanimura
, “
Open quantum dynamics theory for non-equilibrium work: Hierarchical equations of motion approach
,”
J. Phys. Soc. Jpn.
90
,
033001
(
2021
).
27.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence
,”
J. Chem. Phys.
143
,
064107
(
2015
).
28.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines
,”
J. Chem. Phys.
145
,
224105
(
2016
).
29.
S.
Sakamoto
and
Y.
Tanimura
, “
Numerically ‘exact’ simulations of entropy production in the fully quantum regime: Boltzmann entropy vs von Neumann entropy
,”
J. Chem. Phys.
153
,
234107
(
2020
).
30.
S.
Koyanagi
and
Y.
Tanimura
, “
The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach
,”
J. Chem. Phys.
157
,
014104
(
2022
).
31.
S.
Koyanagi
and
Y.
Tanimura
, “
Numerically ‘exact’ simulations of a quantum carnot cycle: Analysis using thermodynamic work diagrams
,”
J. Chem. Phys.
157
,
084110
(
2022
).
32.
P.
Ullersma
, “
An exactly solvable model for Brownian motion: I. Derivation of the Langevin equation
,”
Physica
32
,
27
55
(
1966
).
33.
P.
Ullersma
, “
An exactly solvable model for Brownian motion: II. derivation of the Fokker-Planck equation and the master equation
,”
Physica
32
,
56
73
(
1966
).
34.
A.
Caldeira
and
A.
Leggett
, “
Path integral approach to quantum brownian motion
,”
Physica A
121
,
587
616
(
1983
).
35.
H.
Grabert
,
P.
Schramm
, and
G.-L.
Ingold
, “
Quantum Brownian motion: The functional integral approach
,”
Phys. Rep.
168
,
115
207
(
1988
).
36.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
2012
).
37.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
38.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
39.
Y.
Tanimura
, “
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
,”
J. Chem. Phys.
142
,
144110
(
2015
).
40.
A.
Kato
and
Y.
Tanimura
, “
Quantum suppression of ratchet rectification in a Brownian system driven by a biharmonic force
,”
J. Phys. Chem. B
117
,
13132
13144
(
2013
).
41.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
42.
K. A.
Velizhanin
,
H.
Wang
, and
M.
Thoss
, “
Heat transport through model molecular junctions: A multilayer multiconfiguration time-dependent hartree approach
,”
Chem. Phys. Lett.
460
,
325
330
(
2008
).
43.
H.
Wang
and
M.
Thoss
, “
From coherent motion to localization: Dynamics of the spin-boson model at zero temperature
,”
New J. Phys.
10
,
115005
(
2008
).
44.
A. W.
Chin
,
J.
Prior
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Generalized polaron ansatz for the ground state of the sub-ohmic spin-boson model: An analytic theory of the localization transition
,”
Phys. Rev. Lett.
107
,
160601
(
2011
).
45.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
, “
Dynamics of the dissipative two-state system
,”
Rev. Mod. Phys.
59
,
1
85
(
1987
).
46.
R.
Bulla
,
N.-H.
Tong
, and
M.
Vojta
, “
Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model
,”
Phys. Rev. Lett.
91
,
170601
(
2003
).
47.
C.
Duan
,
Z.
Tang
,
J.
Cao
, and
J.
Wu
, “
Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion
,”
Phys. Rev. B
95
,
214308
(
2017
).
48.
N.
Anto-Sztrikacs
,
A.
Nazir
, and
D.
Segal
, “
Effective-Hamiltonian theory of open quantum systems at strong coupling
,”
PRX Quantum
4
,
020307
(
2023
).
49.
J.
Ma
,
Z.
Sun
,
X.
Wang
, and
F.
Nori
, “
Entanglement dynamics of two qubits in a common bath
,”
Phys. Rev. A
85
,
062323
(
2012
).
50.
N.
Lambert
,
S.
Ahmed
,
M.
Cirio
, and
F.
Nori
, “
Modelling the ultra-strongly coupled spin-boson model with unphysical modes
,”
Nat. Commun.
10
,
3721
3729
(
2019
).
51.
M.
Wiedmann
,
J. T.
Stockburger
, and
J.
Ankerhold
, “
Non-Markovian quantum Otto refrigerator
,”
Eur. Phys. J.: Spec.
230
,
851
857
(
2021
).
52.
M.
Esposito
,
M. A.
Ochoa
, and
M.
Galperin
, “
Quantum thermodynamics: A nonequilibrium Green’s function approach
,”
Phys. Rev. Lett.
114
,
080602
(
2015
).
53.
A.
Ishizaki
and
Y.
Tanimura
, “
Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach
,”
J. Phys. Soc. Jpn.
74
,
3131
3134
(
2005
).
54.
Y.
Tanimura
, “
Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities
,”
J. Chem. Phys.
141
,
044114
(
2014
).
55.
Y.
Tanimura
and
P. G.
Wolynes
, “
Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath
,”
Phys. Rev. A
43
,
4131
4142
(
1991
).
56.
Y.
Tanimura
and
P. G.
Wolynes
, “
The interplay of tunneling, resonance, and dissipation in quantum barrier crossing: A numerical study
,”
J. Chem. Phys.
96
,
8485
8496
(
1992
).
57.
T.
Ikeda
and
Y.
Tanimura
, “
Low-temperature quantum Fokker-Planck and Smoluchowski equations and their extension to multistate systems
,”
J. Chem. Theory Comput.
15
,
2517
2534
(
2019
).
58.
L.
Song
and
Q.
Shi
, “
Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator
,”
Phys. Rev. B
95
,
064308
(
2017
).
59.
H.
Gong
,
Y.
Wang
,
X.
Zheng
,
R.
Xu
, and
Y.
Yan
, “
Nonequilibrium work distributions in quantum impurity system–bath mixing processes
,”
J. Chem. Phys.
157
,
054109
(
2022
).
60.
C. L.
Latune
,
G.
Pleasance
, and
F.
Petruccione
, “
Cyclic quantum engines enhanced by strong bath coupling
,”
Phys. Rev. Appl.
20
,
024038
(
2023
).
61.
V.
Boettcher
,
R.
Hartmann
,
K.
Beyer
, and
W. T.
Strunz
, “
Dynamics of a strongly coupled quantum heat engine—computing bath observables from the hierarchy of pure states
,”
J. Chem. Phys.
160
,
094108
(
2024
).
62.
K.
Nakamura
and
Y.
Tanimura
, “
Hierarchical Schrödinger equations of motion for open quantum dynamics
,”
Phys. Rev. A
98
,
012109
(
2018
).
63.
K.
Nakamura
and
Y.
Tanimura
, “
Optical response of laser-driven charge-transfer complex described by Holstein-Hubbard model coupled to heat baths: Hierarchical equations of motion approach
,”
J. Chem. Phys.
155
,
064106
(
2021
).
64.
H.
Takahashi
and
Y.
Tanimura
, “
Discretized hierarchical equations of motion in mixed Liouville–Wigner space for two-dimensional vibrational spectroscopies of liquid water
,”
J. Chem. Phys.
158
,
044115
(
2023
).
65.
H.
Takahashi
and
Y.
Tanimura
, “
Simulating two-dimensional correlation spectroscopies with third-order infrared and fifth-order infrared–Raman processes of liquid water
,”
J. Chem. Phys.
158
,
124108
(
2023
).
66.
C. W.
Chang
,
A. M.
Fennimore
,
A.
Afanasiev
,
D.
Okawa
,
T.
Ikuno
,
H.
Garcia
,
D.
Li
,
A.
Majumdar
, and
A.
Zettl
, “
Isotope effect on the thermal conductivity of boron nitride nanotubes
,”
Phys. Rev. Lett.
97
,
085901
(
2006
).
67.
K. E.
Knowles
,
M. D.
Koch
, and
J. L.
Shelton
, “
Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: Spectroelectrochemistry, microscopy, and identification of thermal contributions
,”
J. Mater. Chem. C
6
,
11853
11867
(
2018
).
68.
S.
Albert-Seifried
and
R. H.
Friend
, “
Measurement of thermal modulation of optical absorption in pump-probe spectroscopy of semiconducting polymers
,”
Appl. Phys. Lett.
98
,
223304
(
2011
).
69.
A.
Rao
,
M. W. B.
Wilson
,
S.
Albert-Seifried
,
R.
Di Pietro
, and
R. H.
Friend
, “
Photophysics of pentacene thin films: The role of exciton fission and heating effects
,”
Phys. Rev. B
84
,
195411
(
2011
).
70.
K.
Okumura
and
Y.
Tanimura
, “
Two-time correlation functions of a harmonic system nonbilinearly coupled to a heat bath: Spontaneous Raman spectroscopy
,”
Phys. Rev. E
56
,
2747
2750
(
1997
).
71.
P.
Pechukas
,
J.
Ankerhold
, and
H.
Grabert
, “
Quantum Smoluchowski equation
,”
Ann. Phys.
512
,
794
803
(
2000
).
72.
J.
Ankerhold
,
P.
Pechukas
, and
H.
Grabert
, “
Strong friction limit in quantum mechanics: The quantum smoluchowski equation
,”
Phys. Rev. Lett.
87
,
086802
(
2001
).
73.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
, “
Communication: Padé spectrum decomposition of Fermi function and Bose function
,”
J. Chem. Phys.
133
,
101106
(
2010
).
74.
W. R.
Frensley
, “
Boundary conditions for open quantum systems driven far from equilibrium
,”
Rev. Mod. Phys.
62
,
745
791
(
1990
).
75.
H.
Kramers
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
,
284
304
(
1940
).
76.
H.
Risken
and
H.
Risken
,
Fokker-Planck Equation
(
Springer
,
1996
).
77.
C. K.
Lee
,
J.
Cao
, and
J.
Gong
, “
Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations
,”
Phys. Rev. E
86
,
021109
(
2012
).
78.
D.
Xu
and
J.
Cao
, “
Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach
,”
Front. Phys.
11
,
110308
(
2016
).
79.
T.
Ikeda
,
H.
Ito
, and
Y.
Tanimura
, “
Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions
,”
J. Chem. Phys.
142
,
212421
(
2015
).
80.
S.
Koyanagi
and
Y.
Tanimura
, “
Classical and quantum thermodynamics in non-equilibrium regime: Application to Stirling engine
,” arXiv:2405.17791 [cond-mat.stat-mech] (
2024
).
81.
H.
Tasaki
, “
Jarzynski relations for quantum systems and some applications
,” arXiv:cond-mat/0009244 [cond-mat.stat-mech] (
2000
).
82.
W. H.
Press
,
W. T.
Vetterling
,
S. A.
Teukolsky
, and
B. P.
Flannery
,
Numerical Recipes
(
Cambridge University Press
,
1988
).
You do not currently have access to this content.