The comprehension of nonadiabatic dynamics in polyatomic systems relies heavily on the simultaneous advancements in theoretical and experimental domains. The gas-phase ultrafast electron diffraction (UED) technique has attracted significant attention as a unique tool for monitoring photochemical and photophysical processes at the all-atomic level with high temporal and spatial resolutions. In this work, we simulate the UED spectra of cyclobutanone using the trajectory surface hopping method at the extended multi-state complete active space second order perturbation theory (XMS-CASPT2) level and thereby predict the results of the upcoming UED experiments in the Stanford Linear Accelerator Laboratory. The simulated results demonstrate that a few pathways, including the C2 and C3 dissociation channels, as well as the ring opening channel, play important roles in the nonadiabatic reactions of cyclobutanone. We demonstrate that the simulated UED signal can be directly interpreted in terms of atomic motions, which provides a unique way of monitoring the evolution of the molecular structure in real time. Our work not only provides numerical data that help to determine the accuracy of the well-known surface hopping dynamics at the high XMS-CASPT2 electronic-structure level but also facilitates the understanding of the microscopic mechanisms of the photoinduced reactions in cyclobutanone.

1.
Y.-C.
Cheng
and
G. R.
Fleming
, “
Dynamics of light harvesting in photosynthesis
,”
Annu. Rev. Phys. Chem.
60
,
241
262
(
2009
).
2.
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
,
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
(
World Scientific
,
2004
), Vol.
15
.
3.
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
,
Conical Intersections: Theory, Computation and Experiment
(
World Scientific
,
2011
), Vol.
17
.
4.
S.
Gozem
,
H. L.
Luk
,
I.
Schapiro
, and
M.
Olivucci
, “
Theory and simulation of the ultrafast double-bond isomerization of biological chromophores
,”
Chem. Rev.
117
,
13502
13565
(
2017
).
5.
B. F.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
,
3305
3336
(
2018
).
6.
R.
Crespo-Otero
and
M.
Barbatti
, “
Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics
,”
Chem. Rev.
118
,
7026
7068
(
2018
).
7.
W. T.
Pollard
and
R. A.
Mathies
, “
Analysis of femtosecond dynamic absorption spectra of nonstationary states
,”
Annu. Rev. Phys. Chem.
43
,
497
523
(
1992
).
8.
A. H.
Zewail
, “
Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture)
,”
Angew. Chem., Int. Ed.
39
,
2586
2631
(
2000
).
9.
A.
Stolow
,
A. E.
Bragg
, and
D. M.
Neumark
, “
Femtosecond time-resolved photoelectron spectroscopy
,”
Chem. Rev.
104
,
1719
1758
(
2004
).
10.
M.
Kowalewski
,
B. P.
Fingerhut
,
K. E.
Dorfman
,
K.
Bennett
, and
S.
Mukamel
, “
Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes: From the infrared to the x-ray regime
,”
Chem. Rev.
117
,
12165
12226
(
2017
).
11.
M.
Maiuri
,
M.
Garavelli
, and
G.
Cerullo
, “
Ultrafast spectroscopy: State of the art and open challenges
,”
J. Am. Chem. Soc.
142
,
3
15
(
2019
).
12.
I.
Conti
,
G.
Cerullo
,
A.
Nenov
, and
M.
Garavelli
, “
Ultrafast spectroscopy of photoactive molecular systems from first principles: Where we stand today and where we are going
,”
J. Am. Chem. Soc.
142
,
16117
16139
(
2020
).
13.
K.
Polley
and
R. F.
Loring
, “
Two-dimensional vibrational–electronic spectra with semiclassical mechanics
,”
J. Chem. Phys.
154
,
194110
(
2021
).
14.
Y.
Yan
,
Y.
Liu
,
T.
Xing
, and
Q.
Shi
, “
Theoretical study of excitation energy transfer and nonlinear spectroscopy of photosynthetic light-harvesting complexes using the nonperturbative reduced dynamics method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1498
(
2021
).
15.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
16.
L.
González
and
R.
Lindh
,
Quantum Chemistry and Dynamics of Excited States: Methods and Applications
(
John Wiley & Sons
,
2020
).
17.
H.
Denschlag
and
E. K.
Lee
, “
Benzene photosensitization and direct photolysis of cyclobutanone and cyclobutanone-2-t in the gas phase
,”
J. Am. Chem. Soc.
90
,
3628
3638
(
1968
).
18.
N. E.
Lee
,
H.
Denschlag
, and
E. K.
Lee
, “
Photoactivation study of internally converted vibrationally excited cyclobutanone-2-t
,”
J. Chem. Phys.
48
,
3334
3335
(
1968
).
19.
L. H.
Scharpen
and
V. W.
Laurie
, “
Microwave spectrum, ring-puckering potential function, ring structure, and dipole moment of cyclobutanone
,”
J. Chem. Phys.
49
,
221
228
(
1968
).
20.
N. E.
Lee
and
E. K.
Lee
, “
Tracer study of photochemically excited cyclobutanone-2-t and cyclobutanone. II. Detailed mechanism, energetics, unimolecular decomposition rates, and intermolecular vibrational energy transfer
,”
J. Chem. Phys.
50
,
2094
2107
(
1969
).
21.
R. F.
Whitlock
and
A.
Duncan
, “
Electronic spectrum of cyclobutanone
,”
J. Chem. Phys.
55
,
218
224
(
1971
).
22.
J. C.
Hemminger
and
E. K.
Lee
, “
Predissociation of cyclobutanone studied by fluorescence excitation spectroscopy and single vibronic level photochemistry
,”
J. Chem. Phys.
54
,
1405
1406
(
1971
).
23.
E. K.
Lee
,
J. C.
Hemminger
, and
C. F.
Rusbult
, “
Unusual photochemistry of cyclobutanone near its predissociation threshold
,”
J. Am. Chem. Soc.
93
,
1867
1871
(
1971
).
24.
E. K.
Lee
,
R. G.
Shortridge
, Jr.
, and
C. F.
Rusbult
, “
Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase
,”
J. Am. Chem. Soc.
93
,
1863
1867
(
1971
).
25.
J. C.
Hemminger
and
E. K.
Lee
, “
Fluorescence excitation and photodecomposition of the first excited singlet cyclobutanone (1A2): A study of predissociation of and collisional energy transfer from the vibronically selected species
,”
J. Chem. Phys.
56
,
5284
5295
(
1972
).
26.
J.
Hemminger
,
H. A.
Carless
, and
E. K.
Lee
, “
Laser-excited fluorescence emission from cis and trans isomers of 2,3- and 2,4-dimethylcyclobutanone. Ultra-short-lived excited molecules
,”
J. Am. Chem. Soc.
95
,
682
685
(
1973
).
27.
G.
Izawa
,
E. K.
Lee
, and
F.
Rowland
, “
Recoil tritium reactions with cyclobutanone. Test for electronically excited products of the tritium-for-hydrogen substitution reaction
,”
J. Phys. Chem.
77
,
1210
1217
(
1973
).
28.
G. M.
Breuer
,
R. S.
Lewis
, and
E. K.
Lee
, “
Unimolecular decomposition rates of cyclobutanone, 3-oxetanone, and perfluorocyclobutanone. RRKM [Rice-Ramsperger-Kassel-Marcus] calculation of internally converted hot molecules
,”
J. Phys. Chem.
79
,
1985
1991
(
1975
).
29.
W. M.
Stigliani
,
V. W.
Laurie
, and
L.
Scharpen
, “
Structure of cyclobutanone
,”
J. Mol. Spectrosc.
62
,
85
89
(
1976
).
30.
K. Y.
Tang
and
E. K.
Lee
, “
Laser photolysis of cyclobutanone. Photodecomposition from selected vibronic levels at long wavelengths
,”
J. Phys. Chem.
80
,
1833
1836
(
1976
).
31.
R.
Harrison
,
H.
Hawkins
,
R.
Leo
, and
P.
John
, “
The absorption of pulsed infrared radiation by cyclobutanone and its subsequent decomposition
,”
Chem. Phys. Lett.
70
,
555
559
(
1980
).
32.
G.
Causley
and
B.
Russell
, “
Electric dichroism spectroscopy in the vacuum ultraviolet. I. Cyclobutanone, cyclopentanone, cyclohexanone, and cycloheptanone
,”
J. Chem. Phys.
72
,
2623
2631
(
1980
).
33.
P.
John
,
M. R.
Humphries
,
R. G.
Harrison
, and
P. G.
Harper
, “
Nonequilibrated energy distribution in polyatomic molecules: The infrared MPD of cyclobutanone
,”
J. Chem. Phys.
79
,
1353
1359
(
1983
).
34.
K.
Tamagawa
and
R.
Hilderbrandt
, “
Molecular structure of cyclobutanone as determined by combined analysis of electron diffraction and spectroscopic data
,”
J. Phys. Chem.
87
,
5508
5516
(
1983
).
35.
M.
Baba
and
I.
Hanazaki
, “
The S1(n, π*) states of cyclopentanone and cyclobutanone in a supersonic nozzle beam
,”
J. Chem. Phys.
81
,
5426
5433
(
1984
).
36.
M. D.
Scheer
,
J. R.
McNesby
, and
W.
Braun
, “
A study of the collisional activation of cyclobutanone by the transient heating of tetrafluorosilane
,”
J. Phys. Chem.
88
,
1850
1854
(
1984
).
37.
G.
Nicol
,
D.
Evans
, and
R. D.
McAlpine
, “
Pulsed CO2 laser induced multiphoton decomposition of cyclobutanone: A comparison of predictions for three models of decomposition probability vs. fluence
,”
Appl. Phys. B
39
,
29
34
(
1986
).
38.
J. R.
Guckert
and
R. W.
Carr
, “
Application of the thermal lens technique to infrared multiple photon photochemistry. Estimation of transient temperatures in cyclobutanone
,”
J. Phys. Chem.
90
,
4286
4294
(
1986
).
39.
K. A.
Trentelman
,
D. B.
Moss
,
S. H.
Kable
, and
P. L.
Houston
, “
The 193-nm photodissociation of cyclobutanone: Dynamics of the C2 and C3 channels
,”
J. Phys. Chem.
94
,
3031
3039
(
1990
).
40.
J.
Alonso
,
R.
Spiehl
,
A.
Guarnieri
,
J. C.
López
, and
A. G.
Lesarri
, “
The centimeter and millimeter microwave spectrum of cyclobutanone
,”
J. Mol. Spectrosc.
156
,
341
359
(
1992
).
41.
J.
Zhang
,
W.-Y.
Chiang
, and
J.
Laane
, “
Jet-cooled fluorescence excitation spectra and carbonyl wagging and ring-puckering potential energy functions of cyclobutanone and its 2, 2, 4, 4-d4 isotopomer in the S1(n, π*) electronic excited state
,”
J. Chem. Phys.
100
,
3455
3462
(
1994
).
42.
M.
Zhao
, “
Classical rate of unimolecular isomerization of cyclobutanone
,”
Int. J. Mod. Phys. C
07
,
675
693
(
1996
).
43.
M. B.
Ruiz
,
P.
Otto
, and
Y. G.
Smeyers
, “
The simplex method for geometry optimization in half-projected Hartree–Fock calculations of excited states
,”
J. Mol. Struct.: THEOCHEM
365
,
151
165
(
1996
).
44.
Y. G.
Smeyers
,
M. B.
Ruiz
, and
P. P.
Otto
, “
The half projected Hartree–Fock function for determining singlet excited states. application to cyclobutanone and 3-cyclopenten-1-one
,”
J. Mol. Struct.: THEOCHEM
390
,
91
99
(
1997
).
45.
B.
Brown
and
L. S.
Hegedus
, “
Optically active cyclobutanone chemistry: Synthesis of (−)-cyclobut-A and (±)-3′-epi-cyclobut-A
,”
J. Org. Chem.
63
,
8012
8018
(
1998
).
46.
H.
Tang
,
S.
Jang
,
M.
Zhao
, and
S. A.
Rice
, “
Intramolecular energy transfer in the isomerization of cyclobutanone
,”
Chem. Phys. Lett.
285
,
143
149
(
1998
).
47.
M. R.
Munrow
,
W. C.
Pringle
, and
S. E.
Novick
, “
Determination of the structure of the argon cyclobutanone van der Waals complex
,”
J. Phys. Chem. A
103
,
2256
2261
(
1999
).
48.
E. W.-G.
Diau
,
C.
Kötting
, and
A. H.
Zewail
, “
Femtochemistry of Norrish type-I reactions: II. The anomalous predissociation dynamics of cyclobutanone on the S-1 surface
,”
ChemPhysChem
2
,
294
309
(
2001
).
49.
C. A.
Carter
,
G.
Greidanus
,
J.-X.
Chen
, and
J. M.
Stryker
, “
A new synthesis of cyclobutanones: Highly selective carbonylation of titanacyclobutane complexes prepared by free radical alkylation
,”
J. Am. Chem. Soc.
123
,
8872
8873
(
2001
).
50.
S.
Melandri
,
A.
Maris
,
B. M.
Giuliano
, and
W.
Caminati
, “
Water-ketones hydrogen bonding: The rotational spectrum of cyclobutanone-water
,”
J. Chem. Phys.
123
,
164304
(
2005
).
51.
J. W.
Johnson
,
D. P.
Evanoff
,
M. E.
Savard
,
G.
Lange
,
T. R.
Ramadhar
,
A.
Assoud
,
N. J.
Taylor
, and
G. I.
Dmitrienko
, “
Cyclobutanone mimics of penicillins: Effects of substitution on conformation and hemiketal stability
,”
J. Org. Chem.
73
,
6970
6982
(
2008
).
52.
M. C.
Pirrung
and
J.
Wang
, “
Multicomponent reactions of cyclobutanones
,”
J. Org. Chem.
74
,
2958
2963
(
2009
).
53.
T. S.
Kuhlman
,
S.
Sauer
,
T. I.
Sølling
, and
K. B.
Møller
, “
Symmetry, vibrational energy redistribution and vibronic coupling: The internal conversion processes of cycloketones
,”
J. Chem. Phys.
137
,
22A522
(
2012
).
54.
T. S.
Kuhlman
,
T. I.
Sølling
, and
K. B.
Møller
, “
Coherent motion reveals non-ergodic nature of internal conversion between excited states
,”
ChemPhysChem
13
,
820
827
(
2012
).
55.
Q.
Zou
,
Y.
Zhao
,
N. S.
Makarov
,
J.
Campo
,
H.
Yuan
,
D.-C.
Fang
,
J. W.
Perry
, and
F.
Wu
, “
Effect of alicyclic ring size on the photophysical and photochemical properties of bis(arylidene)cycloalkanone compounds
,”
Phys. Chem. Chem. Phys.
14
,
11743
11752
(
2012
).
56.
R.
Centore
,
M.
Jazbinsek
,
A.
Tuzi
,
A.
Roviello
,
A.
Capobianco
, and
A.
Peluso
, “
A series of compounds forming polar crystals and showing single-crystal-to-single-crystal transitions between polar phases
,”
CrystEngComm
14
,
2645
2653
(
2012
).
57.
F.
Secci
,
A.
Frongia
, and
P. P.
Piras
, “
Stereocontrolled synthesis and functionalization of cyclobutanes and cyclobutanones
,”
Molecules
18
,
15541
15572
(
2013
).
58.
S.-H.
Xia
,
X.-Y.
Liu
,
Q.
Fang
, and
G.
Cui
, “
Excited-state ring-opening mechanism of cyclic ketones: A MS-CASPT2//CASSCF study
,”
J. Phys. Chem. A
119
,
3569
3576
(
2015
).
59.
L.
Liu
and
W.-H.
Fang
, “
New insights into photodissociation dynamics of cyclobutanone from the AIMS dynamic simulation
,”
J. Chem. Phys.
144
,
144317
(
2016
).
60.
M.-H.
Kao
,
R. K.
Venkatraman
,
M. N.
Ashfold
, and
A. J.
Orr-Ewing
, “
Effects of ring-strain on the ultrafast photochemistry of cyclic ketones
,”
Chem. Sci.
11
,
1991
2000
(
2020
).
61.
J. H.
Mulzer
and
T.
Bach
,
Natural Product Synthesis I: Targets, Methods, Concepts
(
Springer Science & Business Media
,
2005
), Vol.
1
.
62.
M.
Fleck
and
T.
Bach
, “
Total synthesis of the tetracyclic sesquiterpene (±)‐punctaporonin C
,”
Angew. Chem., Int. Ed.
47
,
6189
6191
(
2008
).
63.
T. S.
Kuhlman
,
M.
Pittelkow
,
T. I.
Sølling
, and
K. B.
Møller
, “
Pulling the levers of photophysics: How structure controls the rate of energy dissipation
,”
Angew. Chem., Int. Ed.
52
,
2247
2250
(
2013
).
64.
M.
Barbatti
,
Z.
Lan
,
R.
Crespo-Otero
,
J. J.
Szymczak
,
H.
Lischka
, and
W.
Thiel
, “
Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine
,”
J. Chem. Phys.
137
,
22A503
(
2012
).
65.
J.
Yang
,
M.
Guehr
,
X.
Shen
,
R.
Li
,
T.
Vecchione
,
R.
Coffee
,
J.
Corbett
,
A.
Fry
,
N.
Hartmann
,
C.
Hast
et al, “
Diffractive imaging of coherent nuclear motion in isolated molecules
,”
Phys. Rev. Lett.
117
,
153002
(
2016
).
66.
J.
Yang
,
M.
Guehr
,
T.
Vecchione
,
M. S.
Robinson
,
R.
Li
,
N.
Hartmann
,
X.
Shen
,
R.
Coffee
,
J.
Corbett
,
A.
Fry
et al, “
Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses
,”
Nat. Commun.
7
,
11232
(
2016
).
67.
J.
Yang
,
X.
Zhu
,
T. J.
Wolf
,
Z.
Li
,
J. P. F.
Nunes
,
R.
Coffee
,
J. P.
Cryan
,
M.
Gühr
,
K.
Hegazy
,
T. F.
Heinz
et al, “
Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction
,”
Science
361
,
64
67
(
2018
).
68.
K. J.
Wilkin
,
R. M.
Parrish
,
J.
Yang
,
T. J.
Wolf
,
J. P. F.
Nunes
,
M.
Guehr
,
R.
Li
,
X.
Shen
,
Q.
Zheng
,
X.
Wang
et al, “
Diffractive imaging of dissociation and ground-state dynamics in a complex molecule
,”
Phys. Rev. A
100
,
023402
(
2019
).
69.
T. J.
Wolf
,
D. M.
Sanchez
,
J.
Yang
,
R.
Parrish
,
J.
Nunes
,
M.
Centurion
,
R.
Coffee
,
J.
Cryan
,
M.
Gühr
,
K.
Hegazy
et al, “
The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction
,”
Nat. Chem.
11
,
504
509
(
2019
).
70.
M.
Centurion
,
T. J.
Wolf
, and
J.
Yang
, “
Ultrafast imaging of molecules with electron diffraction
,”
Annu. Rev. Phys. Chem.
73
,
21
42
(
2022
).
71.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
72.
T.
Shiozaki
,
W.
Győrffy
,
P.
Celani
, and
H.-J.
Werner
, “
Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients
,”
J. Chem. Phys.
135
,
081106
(
2011
).
73.
M.
Frisch
,
G.
Trucks
,
H.
Schlegel
,
G.
Scuseria
,
M.
Robb
,
J.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G.
Petersson
,
H.
Nakatsuji
et al,
Gaussian 16 rev. c. 01
,
Wallingford, CT
,
2016
.
74.
R.
Crespo-Otero
and
M.
Barbatti
, “
Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran
,” in
Marco Antonio Chaer Nascimento: A Festschrift from Theoretical Chemistry Accounts
(
Springer
,
2014
), pp.
89
102
.
75.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
(
1932
).
76.
I.
Polyak
,
L.
Hutton
,
R.
Crespo-Otero
,
M.
Barbatti
, and
P. J.
Knowles
, “
Ultrafast photoinduced dynamics of 1,3-cyclohexadiene using XMS-CASPT2 surface hopping
,”
J. Chem. Theory Comput.
15
,
3929
3940
(
2019
).
77.
O.
Travnikova
,
T.
Pitesa
,
A.
Ponzi
,
M.
Sapunar
,
R. J.
Squibb
,
R.
Richter
,
P.
Finetti
,
M.
Di Fraia
,
A.
De Fanis
,
N.
Mahne
et al, “
Photochemical ring-opening reaction of 1,3-cyclohexadiene: Identifying the true reactive state
,”
J. Am. Chem. Soc.
144
,
21878
21886
(
2022
).
78.
G.
Granucci
and
M.
Persico
, “
Critical appraisal of the fewest switches algorithm for surface hopping
,”
J. Chem. Phys.
126
,
134114
(
2007
).
79.
L.
Du
and
Z.
Lan
, “
An on-the-fly surface-hopping program jade for nonadiabatic molecular dynamics of polyatomic systems: Implementation and applications
,”
J. Chem. Theory Comput.
11
,
1360
1374
(
2015
).
80.
T.
Shiozaki
, “
Bagel: Brilliantly advanced general electronic-structure library
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
81.
L. O.
Brockway
, “
Electron diffraction by gas molecules
,”
Rev. Mod. Phys.
8
,
231
(
1936
).
82.
T.
Wolf
,
Diffraction simulation
,
2020
. https://github.com/ThomasJAWolf/Diffraction_simulation.
83.
A.
Udvarhazi
and
M. A.
El-Sayed
, “
Vacuum-ultraviolet spectra of cyclic ketones
,”
J. Chem. Phys.
42
,
3335
3336
(
1965
).
You do not currently have access to this content.