A new combined density functional theory and multi-reference configuration interaction (DFT/MRCI) Hamiltonian parameterized solely using the benchmark ab initio vertical excitation energies obtained from the QUEST databases is presented. This new formulation differs from all previous versions of the method in that the choice of the underlying exchange–correlation (XC) functional employed to construct the one-particle (orbital) basis is considered, and a new XC functional, QTP17, is chosen for its ability to generate a balanced description of core and valence vertical excitation energies. The ability of the new DFT/MRCI Hamiltonian, termed QE8, to furnish accurate excitation energies is confirmed using benchmark quantum chemistry computations, and a mean absolute error of 0.16 eV is determined for the wide range of electronic excitations included in the validation dataset. In particular, the QE8 Hamiltonian dramatically improves the performance of DFT/MRCI for doubly excited states. The performance of fast approximate DFT/MRCI methods, p-DFT/MRCI and DFT/MRCI(2), is also evaluated using the QE8 Hamiltonian, and they are found to yield excitation energies in quantitative agreement with the parent DFT/MRCI method, with the two methods exhibiting a mean difference of 0.01 eV with respect to DFT/MRCI over the entire benchmark set.

1.
S.
Grimme
and
M.
Waletzke
, “
A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods
,”
J. Chem. Phys.
111
,
5645
5655
(
1999
).
2.
I.
Lyskov
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
Redesign of the DFT/MRCI Hamiltonian
,”
J. Chem. Phys.
144
,
034104
(
2016
).
3.
A.
Heil
and
C. M.
Marian
, “
DFT/MRCI Hamiltonian for odd and even numbers of electrons
,”
J. Chem. Phys.
147
,
194104
(
2017
).
4.
A.
Heil
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
On the performance of DFT/MRCI Hamiltonians for electronic excitations in transition metal complexes: The role of the damping function
,”
J. Chem. Phys.
149
,
164106
(
2018
).
5.
C. M.
Marian
,
A.
Heil
, and
M.
Kleinschmidt
, “
The DFT/MRCI method
,”
WIREs Comput. Mol. Sci.
9
,
e1394
(
2019
).
6.
D. R.
Dombrowski
,
T.
Schulz
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
R2022: A DFT/MRCI ansatz with improved performance for double excitations
,”
J. Phys. Chem. A
127
,
2011
2025
(
2023
).
7.
S. P.
Neville
and
M. S.
Schuurman
, “
Removing the deadwood from DFT/MRCI wave functions: The p-DFT/MRCI method
,”
J. Chem. Theory Comput.
17
,
7657
7665
(
2021
).
8.
S. P.
Neville
and
M. S.
Schuurman
, “
A perturbative approximation to DFT/MRCI: DFT/MRCI(2)
,”
J. Chem. Phys.
157
,
164103
(
2022
).
9.
I.
Seidu
,
S. P.
Neville
,
M.
Kleinschmidt
,
A.
Heil
,
C. M.
Marian
, and
M. S.
Schuurman
, “
The simulation of x-ray absorption spectra from ground and excited electronic states using core-valence separated DFT/MRCI
,”
J. Chem. Phys.
151
,
144104
(
2019
).
10.
K. S.
Zinchenko
,
F.
Ardana-Lamas
,
I.
Seidu
,
S. P.
Neville
,
J.
van der Veen
,
V. U.
Lanfaloni
,
M. S.
Schuurman
, and
H. J.
Wörner
, “
Sub-7-femtosecond conical-intersection dynamics probed at the carbon k-edge
,”
Science
371
,
489
494
(
2021
).
11.
I.
Seidu
,
S. P.
Neville
,
R. J.
MacDonell
, and
M. S.
Schuurman
,
Phys. Chem. Chem. Phys.
24
,
1345
1354
(
2022
).
12.
F. J.
Avila Ferrer
,
J.
Cerezo
,
E.
Stendardo
,
R.
Improta
, and
F.
Santoro
, “
Insights for an accurate comparison of computational data to experimental absorption and emission spectra: Beyond the vertical transition approximation
,”
J. Chem. Theory Comput.
9
,
2072
2082
(
2013
).
13.
B.
Lasorne
,
J.
Jornet-Somoza
,
H.-D.
Meyer
,
D.
Lauvergnat
,
M. A.
Robb
, and
F.
Gatti
, “
Vertical transition energies vs. absorption maxima: Illustration with the UV absorption spectrum of ethylene
,”
Spectrochim. Acta, Part A
119
,
52
58
(
2014
), part of Special Issue: Frontiers in molecular vibrational calculations and computational spectroscopy.
14.
S.
Bai
,
R.
Mansour
,
L.
Stojanović
,
J. M.
Toldo
, and
M.
Barbatti
, “
On the origin of the shift between vertical excitation and band maximum in molecular photoabsorption
,”
J. Mol. Model.
26
,
107
(
2020
).
15.
S. P.
Neville
and
G. A.
Worth
, “
A reinterpretation of the electronic spectrum of pyrrole: A quantum dynamics study
,”
J. Chem. Phys.
140
,
034317
(
2014
).
16.
S. P.
Neville
,
A.
Stolow
, and
M. S.
Schuurman
, “
Vacuum ultraviolet excited state dynamics of the smallest ring, cyclopropane. I. A reinterpretation of the electronic spectrum and the effect of intensity borrowing
,”
J. Chem. Phys.
149
,
144310
(
2018
).
17.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
18.
I.
Lyskov
,“
Redesign and reparameterization of the DFT/MRCI Hamiltonian and its application to electronically excited linear polyenes
,” Ph.D. thesis (
Heinrich-Heine-Universität Düsseldorf
,
2016
).
19.
R. W.
Wetmore
and
G. A.
Segal
,
Chem. Phys. Lett.
36
,
478
(
1975
).
20.
G. A.
Segal
,
R. W.
Wetmore
, and
K.
Wolf
, “
Efficient methods for configuration interaction calculations
,”
Chem. Phys.
30
,
269
297
(
1978
).
21.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
4379
(
2018
).
22.
P.-F.
Loos
,
M.
Boggio-Pasqua
,
A.
Scemama
,
M.
Caffarel
, and
D.
Jacquemin
, “
Reference energies for double excitations
,”
J. Chem. Theory Comput.
15
,
1939
1956
(
2019
).
23.
P.-F.
Loos
,
F.
Lipparini
,
M.
Boggio-Pasqua
,
A.
Scemama
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate energies and benchmarks for medium sized molecules
,”
J. Chem. Theory Comput.
16
,
1711
1741
(
2020
).
24.
P.-F.
Loos
,
A.
Scemama
,
M.
Boggio-Pasqua
, and
D.
Jacquemin
, “
Mountaineering strategy to excited states: Highly accurate energies and benchmarks for exotic molecules and radicals
,”
J. Chem. Theory Comput.
16
,
3720
3736
(
2020
).
25.
M.
Véril
,
A.
Scemama
,
M.
Caffarel
,
F.
Lipparini
,
M.
Boggio-Pasqua
,
D.
Jacquemin
, and
P.-F.
Loos
, “
QUESTDB: A database of highly accurate excitation energies for the electronic structure community
,”
WIREs Comput. Mol. Sci.
11
,
e1517
(
2021
).
26.
P.-F.
Loos
,
M.
Comin
,
X.
Blase
, and
D.
Jacquemin
, “
Reference energies for intramolecular charge-transfer excitations
,”
J. Chem. Theory Comput.
17
,
3666
3686
(
2021
).
27.
P.-F.
Loos
and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate energies and benchmarks for bicyclic systems
,”
J. Phys. Chem. A
125
,
10174
10188
(
2021
).
28.
P.-F.
Loos
,
A.
Scemama
, and
D.
Jacquemin
, “
The quest for highly accurate excitation energies: A computational perspective
,”
J. Phys. Chem. Lett.
11
,
2374
2383
(
2020
).
29.
H.
Koch
,
O.
Christiansen
,
P.
Jorgensen
,
A. M.
Sanchez de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
1818
(
1997
).
30.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
, “
Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions
,”
J. Chem. Phys.
58
,
5745
5759
(
1973
).
31.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
, “
Using perturbatively selected configuration interaction in quantum Monte Carlo calculations
,”
Can. J. Chem.
91
,
879
885
(
2013
).
32.
E.
Giner
,
A.
Scemama
, and
M.
Caffarel
, “
Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions
,”
J. Chem. Phys.
142
,
044115
(
2015
).
33.
Y.
Garniron
,
T.
Applencourt
,
K.
Gasperich
,
A.
Benali
,
A.
Ferté
,
J.
Paquier
,
B.
Pradines
,
R.
Assaraf
,
P.
Reinhardt
,
J.
Toulouse
,
P.
Barbaresco
,
N.
Renon
,
G.
David
,
J.-P.
Malrieu
,
M.
Véril
,
M.
Caffarel
,
P.-F.
Loos
,
E.
Giner
, and
A.
Scemama
, “
Quantum package 2.0: An open-source determinant-driven suite of programs
,”
J. Chem. Theory Comput.
15
,
3591
3609
(
2019
).
34.
R. A.
Kendall
,
T. H.
Dunning
,
R. J.
Harrison
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
35.
D. E.
Woon
,
T. H.
Dunning
, and
H.
Thom
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
36.
S.
Neville
and
M.
Schuurman
,
GRaCI: General Reference Configuration Interaction
(
2021
).
37.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
38.
U.
Ekström
,
L.
Visscher
,
R.
Bast
et al, “
Arbitrary-order density functional response theory from automatic differentiation
,”
J. Chem. Theory Comput.
6
,
1971
(
2010
).
39.
H.
Koch
and
P.
Jorgensen
, “
Coupled cluster response functions
,”
J. Chem. Phys.
93
,
3333
3344
(
1990
).
40.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
41.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
42.
J.
Noga
and
R. J.
Bartlett
, “
The full CCSDT model for molecular electronic structure
,”
J. Chem. Phys.
86
,
7041
7050
(
1987
).
43.
G. E.
Scuseria
and
H. F.
Schaefer
, “
A new implementation of the full CCSDT model for molecular electronic structure
,”
Chem. Phys. Lett.
152
,
382
386
(
1988
).
44.
M.
Kállay
,
P. R.
Nagy
,
D.
Mester
,
Z.
Rolik
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
P. B.
Szabó
,
L.
Gyevi-Nagy
,
B.
Hégely
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
A.
Ganyecz
, “
The MRCC program system: Accurate quantum chemistry from water to proteins
,”
J. Chem. Phys.
152
,
074107
(
2020
).
45.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
, “
Specific CI calculation of energy differences: Transition energies and bond energies
,”
Chem. Phys.
172
,
33
43
(
1993
).
46.
S.
Grimme
, “
Density functional calculations with configuration interaction for the excited states of molecules
,”
Chem. Phys. Lett.
259
,
128
137
(
1996
).
47.
J.
Olsen
,
B. O.
Roos
,
P.
Jorgensen
, and
H. J. A.
Jensen
, “
Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,”
J. Chem. Phys.
89
,
2185
2192
(
1988
).
48.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
49.
F.
Gao
and
L.
Han
, “
Implementing the Nelder-Mead simplex algorithm with adaptive parameters
,”
Comput. Optim. Appl.
51
,
259
277
(
2012
).
50.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
51.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
52.
K.
Pernal
,
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
, “
Dispersionless density functional theory
,”
Phys. Rev. Lett.
103
,
263201
(
2009
).
53.
K. W.
Wiitala
,
T. R.
Hoye
, and
C. J.
Cramer
, “
Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution
,”
J. Chem. Theory Comput.
2
,
1085
1092
(
2006
).
54.
Y.
Jin
and
R. J.
Bartlett
, “
Accurate computation of X-ray absorption spectra with ionization potential optimized global hybrid functional
,”
J. Chem. Phys.
149
,
064111
(
2018
).
55.
P.
Verma
and
R. J.
Bartlett
, “
Increasing the applicability of density functional theory. IV. Consequences of ionization-potential improved exchange-correlation potentials
,”
J. Chem. Phys.
140
,
18A534
(
2014
).
56.
R. J.
Bartlett
,
V. F.
Lotrich
, and
I. V.
Schweigert
, “
Ab initio density functional theory: The best of both worlds?
,”
J. Chem. Phys.
123
,
62205
(
2005
).
57.
M. K.
Harbola
, “
Relationship between the highest occupied Kohn-Sham orbital eigenvalue and ionization energy
,”
Phys. Rev. B
60
,
4545
(
1999
).
58.
B.
Kirtman
, “
Simultaneous calculation of several interacting electronic states by generalized Van Vleck perturbation theory
,”
J. Chem. Phys.
75
,
798
808
(
1981
).
59.
S. P.
Neville
,
I.
Seidu
, and
M. S.
Schuurman
, “
Propagative block diagonalization diabatization of DFT/MRCI electronic states
,”
J. Chem. Phys.
152
,
114110
(
2020
).
60.
R.
Forbes
,
S. P.
Neville
,
M. A. B.
Larsen
,
A.
Röder
,
A. E.
Boguslavskiy
,
R.
Lausten
,
M. S.
Schuurman
, and
A.
Stolow
, “
Vacuum ultraviolet excited state dynamics of the smallest ketone: Acetone
,”
J. Phys. Chem. Lett.
12
,
8541
8547
(
2021
).
61.
A.
Chrayteh
,
A.
Blondel
,
P.-F.
Loos
, and
D.
Jacquemin
, “
Mountaineering strategy to excited states: Highly accurate oscillator strengths and dipole moments of small molecules
,”
J. Chem. Theory Comput.
17
,
416
438
(
2021
).
62.
M.
Gouterman
, “
Spectra of porphyrins
,”
J. Mol. Spectrosc.
6
,
138
163
(
1961
).
63.
A.
Ceulemans
,
W.
Oldenhof
,
C.
Gorller-Walrand
, and
L. G.
Vanquickenborne
, “
Gouterman’s “four-orbital” model and the MCD spectra of high-symmetry metalloporphyrins
,”
J. Am. Chem. Soc.
108
,
1155
1163
(
1986
).
64.
A.
Sirohiwal
,
R.
Berraud-Pache
,
F.
Neese
,
R.
Izsák
, and
D. A.
Pantazis
, “
Accurate computation of the absorption spectrum of chlorophyll a with pair natural orbital coupled cluster methods
,”
J. Phys. Chem. B
124
,
8761
8771
(
2020
).
65.
M.
Nooijen
and
R. J.
Bartlett
, “
Similarity transformed equation-of-motion coupled-cluster theory: Details, examples, and comparisons
,”
J. Chem. Phys.
107
,
6812
6830
(
1997
).
66.
C.
Riplinger
and
F.
Neese
, “
An efficient and near linear scaling pair natural orbital based local coupled cluster method
,”
J. Chem. Phys.
138
,
034106
(
2013
).
67.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
,”
J. Chem. Phys.
144
,
024109
(
2016
).
68.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
69.
F.
Weigend
, “
Accurate coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
70.
R.
Sarkar
,
M.
Boggio-Pasqua
,
P.-F.
Loos
, and
D.
Jacquemin
, “
Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments
,”
J. Chem. Theory Comput.
17
,
1117
1132
(
2021
).
71.
T. Y.
Wang
,
S. P.
Neville
, and
M. S.
Schuurman
, “
Machine learning seams of conical intersection: A characteristic polynomial approach
,”
J. Phys. Chem. Lett.
14
,
7780
7786
(
2023
).
You do not currently have access to this content.