We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform “system calls” and enable the incorporation of long-range Ewald electrostatics into the external software’s self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM–ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client–server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM–ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications.

1.
Free Energy Calculations: Theory and Applications in Chemistry and Biology
, edited by
C.
Chipot
and
A.
Pohorille
,
Springer Series in Chemical Physics
(
Springer
,
New York
,
2007
), Vol.
86
.
2.
T. J.
Giese
and
D. M.
York
, “
Quantum mechanical force fields for condensed phase molecular simulations
,”
J. Phys. Condens. Matter
29
,
383002
(
2017
).
3.
T.-S.
Lee
,
B. K.
Radak
,
M.
Huang
,
K.-Y.
Wong
, and
D. M.
York
, “
Roadmaps through free energy landscapes calculated using the multidimensional vFEP approach
,”
J. Chem. Theory Comput.
10
,
24
34
(
2014
).
4.
T. J.
Giese
,
Ş.
Ekesan
, and
D. M.
York
, “
Extension of the variational free energy profile and multistate Bennett acceptance ratio methods for high-dimensional potential of mean force profile analysis
,”
J. Phys. Chem. A
125
,
4216
4232
(
2021
).
5.
A.
van der Vaart
and
M.
Karplus
, “
Minimum free energy pathways and free energy profiles for conformational transitions based on atomistic molecular dynamics simulations
,”
J. Chem. Phys.
126
,
164106
(
2007
).
6.
H.
Hu
,
Z.
Lu
,
J. M.
Parks
,
S. K.
Burger
, and
W.
Yang
, “
Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface
,”
J. Chem. Phys.
128
,
34105
(
2008
).
7.
E.
Vanden-Eijnden
and
M.
Venturoli
, “
Revisiting the finite temperature string method for the calculation of reaction tubes and free energies
,”
J. Chem. Phys.
130
,
194103
(
2009
).
8.
K.
Zinovjev
and
I.
Tuñón
, “
Adaptive finite temperature string method in collective variables
,”
J. Phys. Chem. A
121
,
9764
9772
(
2017
).
9.
T. J.
Giese
,
Ş.
Ekesan
,
E.
McCarthy
,
Y.
Tao
, and
D. M.
York
, “
Surface-accelerated string method for locating minimum free energy paths
,”
J. Chem. Theory Comput.
20
,
2058
2073
(
2024
).
10.
C.
Li
and
G. A.
Voth
, “
Using machine learning to greatly accelerate path integral ab initio molecular dynamics
,”
J. Chem. Theory Comput.
18
,
599
604
(
2022
).
11.
J.
Gao
, “
Chapter fourteen—Enzymatic kinetic isotope effects from path-integral free energy perturbation theory
,”
Methods Enzymol.
577
,
359
388
(
2016
).
12.
A.
Vardi-Kilshtain
,
N.
Nitoker
, and
D. T.
Major
, “
Nuclear quantum effects and kinetic isotope effects in enzyme reactions
,”
Arch. Biochem. Biophys.
582
,
18
27
(
2015
).
13.
J. K.
Hwang
,
Z. T.
Chu
,
A.
Yadav
, and
A.
Warshel
, “
Simulations of quantum mechanical corrections for rate constants of hydride-transfer reactions in enzymes and solutions
,”
J. Phys. Chem.
95
,
8445
8448
(
1991
).
14.
J.-K.
Hwang
and
A.
Warshel
, “
A quantized classical path approach for calculations of quantum mechanical rate constants
,”
J. Phys. Chem.
97
,
10053
10058
(
1993
).
15.
J.-K.
Hwang
and
A.
Warshel
, “
How important are quantum mechanical nuclear motions in enzyme catalysis?
,”
J. Am. Chem. Soc.
118
,
11745
11751
(
1996
).
16.
T. J.
Giese
,
M.
Huang
,
H.
Chen
, and
D. M.
York
, “
Recent advances toward a general purpose linear-scaling quantum force field
,”
Acc. Chem. Res.
47
,
2812
2820
(
2014
).
17.
J.
Gao
,
D. G.
Truhlar
,
Y.
Wang
,
M. J.
Mazack
,
P.
Löffler
,
M. R.
Provorse
, and
P.
Rehak
, “
Explicit polarization: A quantum mechanical framework for developing next generation force fields
,”
Acc. Chem. Res.
47
,
2837
2845
(
2014
).
18.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
19.
M.
Meuwly
, “
Machine learning for chemical reactions
,”
Chem. Rev.
121
,
10218
10239
(
2021
).
20.
J.
Zeng
,
T. J.
Giese
,
Ş.
Ekesan
, and
D. M.
York
, “
Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution
,”
J. Chem. Theory Comput.
17
,
6993
7009
(
2021
).
21.
T. J.
Giese
,
J.
Zeng
,
Ş.
Ekesan
, and
D. M.
York
, “
Combined QM/MM, machine learning path integral approach to compute free energy profiles and kinetic isotope effects in RNA cleavage reactions
,”
J. Chem. Theory Comput.
18
,
4304
4317
(
2022
).
22.
X.
Pan
,
J.
Yang
,
R.
Van
,
E.
Epifanovsky
,
J.
Ho
,
J.
Huang
,
J.
Pu
,
Y.
Mei
,
K.
Nam
, and
Y.
Shao
, “
Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions
,”
J. Chem. Theory Comput.
17
,
5745
5758
(
2021
).
23.
R.
Snyder
,
B.
Kim
,
X.
Pan
,
Y.
Shao
, and
J.
Pu
, “
Bridging semiempirical and ab initio QM/MM potentials by Gaussian process regression and its sparse variants for free energy simulation
,”
J. Chem. Phys.
159
,
054107
(
2023
).
24.
J.
Zeng
,
Y.
Tao
,
T. J.
Giese
, and
D. M.
York
, “
QDπ: A quantum deep potential interaction model for drug discovery
,”
J. Chem. Theory Comput.
19
,
1261
1275
(
2023
).
25.
J.
Zeng
,
Y.
Tao
,
T. J.
Giese
, and
D. M.
York
, “
Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states
,”
J. Chem. Phys.
158
,
124110
(
2023
).
26.
Y.
Han
,
Z.
Wang
,
Z.
Wei
,
J.
Liu
, and
J.
Li
, “
Machine learning builds full-QM precision protein force fields in seconds
,”
Briefings Bioinf.
22
,
1
10
(
2021
).
27.
Y.-J.
Zhang
,
A.
Khorshidi
,
G.
Kastlunger
, and
A. A.
Peterson
, “
The potential for machine learning in hybrid QM/MM calculations
,”
J. Chem. Phys.
148
,
241740
(
2018
).
28.
L.
Böselt
,
M.
Thürlemann
, and
S.
Riniker
, “
Machine learning in QM/MM molecular dynamics simulations of condensed-phase systems
,”
J. Chem. Theory Comput.
17
,
2641
2658
(
2021
).
29.
L.
Shen
,
J.
Wu
, and
W.
Yang
, “
Multiscale quantum mechanics/molecular mechanics simulations with neural networks
,”
J. Chem. Theory Comput.
12
,
4934
4946
(
2016
).
30.
L.
Shen
and
W.
Yang
, “
Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks
,”
J. Chem. Theory Comput.
14
,
1442
1455
(
2018
).
31.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
D. S.
Cerutti
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
N.
Forouzesh
,
T. J.
Giese
,
A. W.
Götz
,
H.
Gohlke
,
S.
Izadi
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
T.
Kurtzman
,
T.-S.
Lee
,
P.
Li
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Manathunga
,
M. R.
Machado
,
H. M.
Nguyen
,
K. A.
O’Hearn
,
A. V.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rahnamoun
,
A.
Risheh
,
S.
Schott-Verdugo
,
A.
Shajan
,
J.
Swails
,
J.
Wang
,
H.
Wei
,
X.
Wu
,
Y.
Wu
,
S.
Zhang
,
S.
Zhao
,
Q.
Zhu
,
T. E.
Cheatham
,
D. R.
Roe
,
A.
Roitberg
,
C.
Simmerling
,
D. M.
York
,
M. C.
Nagan
,
K. M.
Merz
, and
K. M.
AmberTools
,
J. Chem. Inf. Model.
63
,
6183
6191
(
2023
).
32.
V. W. D.
Cruzeiro
,
M.
Manathunga
,
K. M.
Merz
, and
A. W.
Götz
, “
Open-source multi-GPU-accelerated QM/MM simulations with AMBER and QUICK
,”
J. Chem. Inf. Model.
61
,
2109
2115
(
2021
).
33.
Y.
Miao
and
K. M.
Merz
, “
Acceleration of high angular momentum electron repulsion integrals and integral derivatives on graphics processing units
,”
J. Chem. Theory Comput.
11
,
1449
1462
(
2015
).
34.
M.
Manathunga
,
Y.
Miao
,
D.
Mu
,
A. W.
Götz
, and
K. M.
Merz
, “
Parallel implementation of density functional theory methods in the quantum interaction computational kernel program
,”
J. Chem. Theory Comput.
16
,
4315
4326
(
2020
).
35.
M.
Manathunga
,
C.
Jin
,
V. W. D.
Cruzeiro
,
Y.
Miao
,
D.
Mu
,
K.
Arumugam
,
K.
Keipert
,
H. M.
Aktulga
,
K. M.
Merz
, and
A. W.
Götz
, “
Harnessing the power of multi-GPU acceleration into the quantum interaction computational kernel program
,”
J. Chem. Theory Comput.
17
,
3955
3966
(
2021
).
36.
M.
Manathunga
,
H. M.
Aktulga
,
A. W.
Götz
, and
K. M.
Merz
, “
Quantum mechanics/molecular mechanics simulations on NVIDIA and AMD graphics processing units
,”
J. Chem. Inf. Model.
63
,
711
717
(
2023
).
37.
T. J.
Giese
and
D. M.
York
, “
Ambient-potential composite Ewald method for ab initio quantum mechanical/molecular mechanical molecular dynamics simulation
,”
J. Chem. Theory Comput.
12
,
2611
2632
(
2016
).
38.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
, “
Extended tight-binding quantum chemistry methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e01493
(
2020
).
39.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
, “
A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86)
,”
J. Chem. Theory Comput.
13
,
1989
2009
(
2017
).
40.
S.
Grimme
,
C.
Bannwarth
,
E.
Caldeweyher
,
J.
Pisarek
, and
A.
Hansen
, “
A general intermolecular force field based on tight-binding quantum chemical calculations
,”
J. Chem. Phys.
147
,
161708
(
2017
).
41.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
,
1652
1671
(
2019
).
42.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafe
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrica
,
A.
Dominguez
,
S.
Ehlert
,
M.
Elstner
,
T.
van der Heide
,
J.
Hermann
,
S.
Irle
,
J. J.
Kranz
,
C.
Kohler
,
T.
Kowalczyk
,
T.
Kubar
,
I. S.
Lee
,
V.
Lutsker
,
R. J.
Maurer
,
S. K.
Min
,
I.
Mitchell
,
C.
Negre
,
T. A.
Niehaus
,
A. M. N.
Niklasson
,
A. J.
Page
,
A.
Pecchia
,
G.
Penazzi
,
M. P.
Persson
,
J.
Rezac
,
C. G.
Sanchez
,
M.
Sternberg
,
M.
Stohr
,
F.
Stuckenberg
,
A.
Tkatchenko
,
V. W. z.
Yu
, and
T.
Frauenheim
, “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
43.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
44.
W.
Liang
,
J.
Zeng
,
D. M.
York
,
L.
Zhang
, and
H.
Wang
, in
A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules
, edited by
Y.
Wang
and
R.
Zhou
(
AIP Publishing
,
2023
) Chap. VI, pp
6–1
6–20
.
45.
J.
Zeng
,
D.
Zhang
,
D.
Lu
,
P.
Mo
,
Z.
Li
,
Y.
Chen
,
M.
Rynik
,
L.
Huang
,
Z.
Li
,
S.
Shi
,
Y.
Wang
,
H.
Ye
,
P.
Tuo
,
J.
Yang
,
Y.
Ding
,
Y.
Li
,
D.
Tisi
,
Q.
Zeng
,
H.
Bao
,
Y.
Xia
,
J.
Huang
,
K.
Muraoka
,
Y.
Wang
,
J.
Chang
,
F.
Yuan
,
S. L.
Bore
,
C.
Cai
,
Y.
Lin
,
B.
Wang
,
J.
Xu
,
J.-X.
Zhu
,
C.
Luo
,
Y.
Zhang
,
R. E. A.
Goodall
,
W.
Liang
,
A. K.
Singh
,
S.
Yao
,
J.
Zhang
,
R.
Wentzcovitch
,
J.
Han
,
J.
Liu
,
W.
Jia
,
D. M.
York
,
W.
E
,
R.
Car
,
L.
Zhang
, and
H.
Wang
, “
DeePMD-kit v2: A software package for deep potential models
,”
J. Chem. Phys.
159
,
054801
(
2023
).
46.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
47.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R.
Broglia
, and
M.
Parrinello
, “
PLUMED: A portable plugin for free-energy calculations with molecular dynamics
,”
Comput. Phys. Commun.
180
,
1961
1972
(
2009
).
48.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
PLUMED 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
49.
M. C.
Zwier
,
J. L.
Adelman
,
J. W.
Kaus
,
A. J.
Pratt
,
K. F.
Wong
,
N. B.
Rego
,
E.
Suárez
,
S.
Lettieri
,
D. W.
Wang
,
M.
Grabe
,
D. M.
Zuckerman
, and
L. T.
Chong
, “
WESTPA: An interoperable, highly scalable software package for weighted ensemble simulation and analysis
,”
J. Chem. Theory Comput.
11
,
800
809
(
2015
).
50.
J. D.
Russo
,
S.
Zhang
,
J. M. G.
Leung
,
A. T.
Bogetti
,
J. P.
Thompson
,
A. J.
DeGrave
,
P. A.
Torrillo
,
A. J.
Pratt
,
K. F.
Wong
,
J.
Xia
,
J.
Copperman
,
J. L.
Adelman
,
M. C.
Zwier
,
D. N.
LeBard
,
D. M.
Zuckerman
, and
L. T.
Chong
, “
WESTPA 2.0: High-performance upgrades for weighted ensemble simulations and analysis of longer-timescale applications
,”
J. Chem. Theory Comput.
18
,
638
649
(
2022
).
51.
T. J.
Giese
and
D. M.
York
, “
FE-ToolKit: The free energy analysis toolkit
,” https://gitlab.com/RutgersLBSR/fe-toolkit (Accessed 3 March 2024).
52.
K.
Nam
,
J.
Gao
, and
D. M.
York
, “
An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations
,”
J. Chem. Theory Comput.
1
,
2
13
(
2005
).
53.
T. J.
Giese
,
M. T.
Panteva
,
H.
Chen
, and
D. M.
York
, “
Multipolar Ewald methods, 1: Theory, accuracy, and performance
,”
J. Chem. Theory Comput.
11
,
436
450
(
2015
).
54.
T. J.
Giese
,
M. T.
Panteva
,
H.
Chen
, and
D. M.
York
, “
Multipolar Ewald methods, 2: Applications using a quantum mechanical force field
,”
J. Chem. Theory Comput.
11
,
451
461
(
2015
).
55.
I. J.
Kimsey
,
E. S.
Szymanski
,
W. J.
Zahurancik
,
A.
Shakya
,
Y.
Xue
,
C.-C.
Chu
,
B. J.
Sathyamoorthy
,
Z.
Suo
, and
H. M.
Al-Hashimi
, “
Dynamic basis for dG•dT misincorporation via tautomerization and ionization
,”
Nature
554
,
195
201
(
2018
).
56.
P.
Li
,
A.
Rangadurai
,
H. M.
Al-Hashimi
, and
S.
Hammes-Schiffer
, “
Environmental effects on guanine-thymine mispair tautomerization explored with quantum mechanical/molecular mechanical free energy simulations
,”
J. Am. Chem. Soc.
142
,
11183
11191
(
2020
).
57.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
,
S.
Ehlert
,
M.
Elstner
,
T.
van der Heide
,
J.
Hermann
,
S.
Irle
,
J. J.
Kranz
,
C.
Köhler
,
T.
Kowalczyk
,
T.
Kubař
,
I. S.
Lee
,
V.
Lutsker
,
R. J.
Maurer
,
S. K.
Min
,
I.
Mitchell
,
C.
Negre
,
T. A.
Niehaus
,
A. M. N.
Niklasson
,
A. J.
Page
,
A.
Pecchia
,
G.
Penazzi
,
M. P.
Persson
,
J.
Řezáč
,
C. G.
Sánchez
,
M.
Sternberg
,
M.
Stöhr
,
F.
Stuckenberg
,
A.
Tkatchenko
,
V. W.-z.
Yu
, and
T.
Frauenheim
, “
DFTB+: General package for performing fast atomistic calculations
,” https://github.com/dftbplus/dftbplus (Accessed 3 March 2024).
58.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
, “
Semiempirical extended tight-binding program package
,” https://github.com/grimme-lab/xtb (Accessed 3 March 2024).
59.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
60.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
61.
P. O.
Dral
,
T.
Zubatiuk
, and
B.-X.
Xue
, in
Quantum Chemistry in the Age of Machine Learning
, edited by
P. O.
Dral
(
Elsevier
,
2022
), Chap. XXI, pp.
491
507
.
62.
Y.
Liu
and
J.
Li
, “
Permutation-invariant-polynomial neural-network-based Δ-machine learning approach: A case for the HO2 self-reaction and its dynamics study
,”
J. Phys. Chem. Lett.
13
,
4729
4738
(
2022
).
63.
M.
Ruth
,
D.
Gerbig
, and
P. R.
Schreiner
, “
Machine learning of coupled cluster (T)-energy corrections via delta (Δ)-learning
,”
J. Chem. Theory Comput.
18
,
4846
4855
(
2022
).
64.
P. A.
Unzueta
,
C. S.
Greenwell
, and
G. J. O.
Beran
, “
Predicting density functional theory-quality nuclear magnetic resonance chemical shifts via Δ-machine learning
,”
J. Chem. Theory Comput.
17
,
826
840
(
2021
).
65.
A.
Musaelian
,
S.
Batzner
,
A.
Johansson
,
L.
Sun
,
C. J.
Owen
,
M.
Kornbluth
, and
B.
Kozinsky
, “
Learning local equivariant representations for large-scale atomistic dynamics
,”
Nat. Commun.
14
,
579
(
2023
).
66.
I.
Batatia
,
D. P.
Kovacs
,
G. N. C.
Simm
,
C.
Ortner
, and
G.
Csanyi
, “
MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
,” (
2022
); https://openreview.net/forum?id=YPpSngE-ZU
67.
J.
Ansel
,
E.
Yang
,
H.
He
,
N.
Gimelshein
,
A.
Jain
,
M.
Voznesensky
,
B.
Bao
,
P.
Bell
,
D.
Berard
,
E.
Burovski
,
G.
Chauhan
,
A.
Chourdia
,
W.
Constable
,
A.
Desmaison
,
Z.
DeVito
,
E.
Ellison
,
W.
Feng
,
J.
Gong
,
M.
Gschwind
,
B.
Hirsh
,
S.
Huang
,
K.
Kalambarkar
,
L.
Kirsch
,
M.
Lazos
,
M.
Lezcano
,
Y.
Liang
,
J.
Liang
,
Y.
Lu
,
C. K.
Luk
,
B.
Maher
,
Y.
Pan
,
C.
Puhrsch
,
M.
Reso
,
M.
Saroufim
,
M. Y.
Siraichi
,
H.
Suk
,
S.
Zhang
,
M.
Suo
,
P.
Tillet
,
X.
Zhao
,
E.
Wang
,
K.
Zhou
,
R.
Zou
,
X.
Wang
,
A.
Mathews
,
W.
Wen
,
G.
Chanan
,
P.
Wu
, and
S.
Chintala
, “
PyTorch 2: Faster machine learning through dynamic python bytecode transformation and graph compilation
,” in
Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
(
Association for Computing Machinery
,
2024
), Vol.
2
.
68.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
, “
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
,”
Comput. Phys. Commun.
185
,
1019
1026
(
2014
).
69.
M.
Ceriotti
and
D. E.
Manolopoulos
, “
Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei
,”
Phys. Rev. Lett.
109
,
100604
(
2012
).
70.
M.
Ceriotti
and
T. E.
Markland
, “
Efficient methods and practical guidelines for simulating isotope effects
,”
J. Chem. Phys.
138
,
014112
(
2013
).
71.
W. N.
Hunter
,
T.
Brown
,
G.
Kneale
,
N. N.
Anand
,
D.
Rabinovich
, and
O.
Kennard
, “
The structure of guanosine-thymidine mismatches in B-DNA at 2.5 angstroms resolution
,”
J. Biol. Chem.
262
,
9962
9970
(
1993
).
72.
I. J.
Kimsey
,
K.
Petzold
,
B.
Sathyamoorthy
,
Z. W.
Stein
, and
H. M.
Al-Hashimi
, “
Visualizing transient Watson–Crick-like mispairs in DNA and RNA duplexes
,”
Nature
519
,
315
320
(
2015
).
73.
E. S.
Szymanski
,
I. J.
Kimsey
, and
H. M.
Al-Hashimi
, “
Direct NMR evidence that transient tautomeric and anionic states in dG·dT form Watson–Crick-like base pairs
,”
J. Am. Chem. Soc.
139
,
4326
4329
(
2017
).
74.
W.
Wang
,
H. W.
Hellinga
, and
L. S.
Beese
, “
Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
17644
17648
(
2011
).
75.
K.
Bebenek
,
L. C.
Pedersen
, and
T. A.
Kunkel
, “
Replication infidelity via a mismatch with Watson–Crick geometry
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
1862
1867
(
2011
).
76.
A.
Rozov
,
N.
Demeshkina
,
E.
Westhof
,
M.
Yusupov
, and
G.
Yusupova
, “
New structural insights into translational miscoding
,”
Trends Biochem. Sci.
41
,
798
814
(
2016
).
77.
Ş.
Ekesan
and
D. M.
York
, “
Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8–17 DNAzyme in solution
,”
Nucleic Acids Res.
47
,
10282
10295
(
2019
).
78.
R. J.
Loncharich
,
B. R.
Brooks
, and
R. W.
Pastor
, “
Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide
,”
Biopolymers
32
,
523
535
(
1992
).
79.
R.
Galindo-Murillo
,
J. C.
Robertson
,
M.
Zgarbova
,
J.
Sponer
,
M.
Otyepka
,
P.
Jurecka
, and
T. E.
Cheatham
, “
Assessing the current state of AMBER force field modifications for DNA
,”
J. Chem. Theory Comput.
12
,
4114
4127
(
2016
).
80.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
,
024503
(
2006
).
81.
P.
Li
,
B. P.
Roberts
,
D. K.
Chakravorty
, and
K. M.
Merz
, Jr.
, “
Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent
,”
J. Chem. Theory Comput.
9
,
2733
2748
(
2013
).
82.
M. J. S.
Dewar
,
E.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
, “
Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model
,”
J. Am. Chem. Soc.
107
,
3902
3909
(
1985
).
83.
X.
Lopez
and
D. M.
York
, “
Parameterization of semiempirical methods to treat nucleophilic attacks to biological phosphates: AM1/d parameters for phosphorus
,”
Theor. Chem. Acc.: Theory, Comput. Modeling
109
,
149
159
(
2003
).
84.
K.
Nam
,
Q.
Cui
,
J.
Gao
, and
D. M.
York
, “
Specific reaction parametrization of the AM1/d Hamiltonian for phosphoryl transfer reactions: H, O, and P atoms
,”
J. Chem. Theory Comput.
3
,
486
504
(
2007
).
85.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
154123
(
2010
).
86.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
87.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
, “
Parametrization and benchmark of DFTB3 for organic molecules
,”
J. Chem. Theory Comput.
9
,
338
354
(
2013
).
88.
M.
Gaus
,
X.
Lu
,
M.
Elstner
, and
Q.
Cui
, “
Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications
,”
J. Chem. Theory Comput.
10
,
1518
1537
(
2014
).
89.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
, “
A generally applicable atomic-charge dependent London dispersion correction
,”
J. Chem. Phys.
150
,
154122
(
2019
).
90.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
91.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
, “
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
,”
J. Chem. Phys.
134
,
084104
(
2011
).
92.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
, “
Colored-noise thermostats à la carte
,”
J. Chem. Theory Comput.
6
,
1170
1180
(
2010
).
93.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
, “
Langevin equation with colored noise for constant-temperature molecular dynamics simulations
,”
Phys. Rev. Lett.
102
,
020601
(
2009
).
94.
T. J.
Giese
,
J.
Zeng
, and
D. M.
York
, “
Multireference generalization of the weighted thermodynamic perturbation method
,”
J. Phys. Chem. A
126
,
8519
8533
(
2022
).
95.
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and
E.
Weinan
, “
DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
,”
Comput. Phys. Commun.
253
,
107206
(
2020
).
96.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (Accessed Jan 30, 2017).
97.
K.
Nishimoto
and
N.
Mataga
, “
Electronic structure and spectra of some nitrogen heterocycles
,”
Z. Phys. Chem.
12
,
335
338
(
1957
).
98.
K.
Ohno
, “
Some remarks on the Pariser–Parr–Pople method
,”
Theor. Chim. Acta
2
,
219
227
(
1964
).
99.
G.
Klopman
, “
A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules
,”
J. Am. Chem. Soc.
86
,
4550
4557
(
1964
).
100.
K.
Kosugi
,
H.
Nakano
, and
H.
Sato
, “
SCC-DFTB-PIMD method to evaluate a multidimensional quantum free-energy surface for a proton-transfer reaction
,”
J. Chem. Theory Comput.
15
,
4965
4973
(
2019
).
101.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2010
).
102.
J. R.
Cendagorta
,
H.
Shen
,
Z.
Bačić
, and
M. E.
Tuckerman
, “
Enhanced sampling path integral methods using neural network potential energy surfaces with application to diffusion in hydrogen hydrates
,”
Adv. Theory Simul.
4
,
2000258
(
2021
).
103.
A.
Lamaire
,
M.
Cools-Ceuppens
,
M.
Bocus
,
T.
Verstraelen
, and
V.
Van Speybroeck
, “
Quantum free energy profiles for molecular proton transfers
,”
J. Chem. Theory Comput.
19
,
18
24
(
2023
).
104.
T. J.
Giese
and
D. M.
York
, “
Estimation of frequency factors for the calculation of kinetic isotope effects from classical and path integral free energy simulations
,”
J. Chem. Phys.
158
,
174105
174115
(
2023
).
105.
Z.
Zhang
,
X.
Liu
,
Z.
Chen
,
H.
Zheng
,
K.
Yan
, and
J.
Liu
, “
A unified thermostat scheme for efficient configurational sampling for classical/quantum canonical ensembles via molecular dynamics
,”
J. Chem. Phys.
147
,
034109
(
2017
).
106.
Z.
Zhang
,
X.
Liu
,
K.
Yan
,
M. E.
Tuckerman
, and
J.
Liu
, “
Unified efficient thermostat scheme for the canonical ensemble with holonomic or isokinetic constraints via molecular dynamics
,”
J. Phys. Chem. A
123
,
6056
6079
(
2019
).
107.
C. W.
Hopkins
,
S.
Le Grand
,
R. C.
Walker
, and
A. E.
Roitberg
, “
Long-time-step molecular dynamics through hydrogen mass repartitioning
,”
J. Chem. Theory Comput.
11
,
1864
1874
(
2015
).
108.
D.
Stanzione
,
J.
West
,
R. T.
Evans
,
T.
Minyard
,
O.
Ghattas
, and
D. K.
Panda
, “
Frontera: The evolution of leadership computing at the national science foundation
,” in
PEARC’20 Practice and Experience in Advanced Research Computing
(
Association for Computing Machinery
,
2020
), pp.
106
111
.
109.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).
110.
T. J.
Boerner
,
S.
Deems
,
T. R.
Furlani
,
S. L.
Knuth
, and
J.
Towns
, “
PEARC’23: Practice and experience in advanced research computing
,” in
ACCESS: Advancing Innovation: NSF’s Advanced Cyberinfrastructure Coordination Ecosystem: Services and Supports
(
Association for Computing Machinery
,
2023
), pp.
173
176
.
You do not currently have access to this content.