Methane is considered to be a cubic structure I (CS-I) clathrate hydrate former, although in a number of instances, small amounts of structure II (CS-II) clathrate hydrate have been transiently observed as well. In this work, solid-state magic angle spinning 13C NMR spectra of methane hydrate formed at low temperatures inside silica-based nanoporous materials with pores in the range of 3.8–20.0 nm (CPG-20, Vycor, and MCM-41) show methane in several different environments. In addition to methane encapsulated in the dodecahedral 512 (D) and tetrakaidecahedral 51262 (T) cages typical of the CS-I clathrate hydrate phase, methane guests in pentakaidecahedral 51263 (P) and hexakaidecahedral 51264 (H) cages are also identified, and these appear to be stabilized for extended periods of time. The ratio of methane guests among the D and T cages determined from the line intensities is significantly different from that of bulk CS-I samples and indicates that both CS-I and CS-II are present as the dominant species. This is the first observation of methane in P cages, and the possible structures in which they could be present are discussed. Broad and relatively strong methane peaks, which are also observed in the spectra, can be related to methane dissolved in an amorphous component of water adjacent to the pore walls. Nanoconfinement and interaction with the pore walls clearly have a strong influence on the hydrate formed and may reflect species present in the early stages of hydrate growth.

1.
J. A.
Ripmeester
and
S.
Alavi
,
Clathrate Hydrates: Molecular Science and Characterization
(
Wiley
,
Weinheim, Germany
,
2022
).
2.
J. A.
Ripmeester
,
S.
Takeya
, and
S.
Alavi
, “
Classification of clathrate hydrates
,” in
Clathrate Hydrates: Molecular Science and Characterization
, edited by
J. A.
Ripmeester
and
S.
Alavi
(
Wiley
,
Weinheim, Germany
,
2022
), p.
78
, Table 3.5.
3.
A.
Vysniauskas
and
P. R.
Bishnoi
, “
A kinetic study of methane hydrate formation
,”
Chem. Eng. Sci.
38
,
1061
1072
(
1983
).
4.
B.
Li
,
X.-S.
Li
, and
G.
Li
, “
Kinetic studies of methane hydrate formation in porous media based on experiments in a pilot-scale hydrate simulator and a new model
,”
Chem. Eng. Sci.
105
,
220
230
(
2014
).
5.
J. M.
Schicks
and
J. A.
Ripmeester
, “
The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: Kinetic versus thermodynamic products
,”
Angew. Chem., Int. Ed.
43
,
3310
3313
(
2004
).
6.
M.
Choukroun
,
Y.
Morizet
, and
O.
Grasset
, “
Raman study of methane clathrate hydrates under pressure: New evidence for the metastability of structure II
,”
J. Raman Spectrosc.
38
,
440
451
(
2007
).
7.
A. K.
Sum
,
R. C.
Burruss
, and
E. D.
Sloan
, “
Measurement of clathrate hydrates via Raman spectroscopy
,”
J. Phys. Chem. B
101
(
38
),
7371
7377
(
1997
).
8.
S.
Subramanian
and
E. D.
Sloan
, “
Trends in vibrational frequencies of guests trapped in clathrate hydrate cages
,”
J. Phys. Chem. B
106
,
4348
4355
(
2002
).
9.
H.
Ohno
,
I. L.
Moudrakovski
,
R.
Gordienko
,
J. A.
Ripmeester
, and
V. K.
Walker
, “
Structures of hydrocarbon hydrates during formation with and without inhibitors
,”
J. Phys. Chem. A
116
,
1337
1343
(
2012
).
10.
T.
Pietrass
,
H. C.
Gaede
,
A.
Bifone
,
A.
Pines
, and
J. A.
Ripmeester
, “
Monitoring xenon clathrate hydrate formation on ice surfaces with optically enhanced 129Xe NMR
,”
J. Am. Chem. Soc.
117
,
7520
7525
(
1995
).
11.
I. L.
Moudrakovski
,
A. A.
Sanchez
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Nucleation and growth of hydrates on ice surfaces: New insights from 129Xe NMR experiments with hyperpolarized xenon
,”
J. Phys. Chem. B
105
,
12338
12347
(
2001
).
12.
L.
del Rosso
,
M.
Celli
, and
L.
Ulivi
, “
Raman measurements of pure hydrogen Clathrate formation from a supercooled hydrogen–water solution
,”
J. Phys. Chem. Lett.
6
,
4309
4313
(
2015
).
13.
D. K.
Staykova
,
W. F.
Kuhs
,
A. N.
Salamatin
, and
T.
Hansen
, “
Formation of porous gas hydrates from ice powders: Diffraction experiments and multistage model
,”
J. Phys. Chem. B
107
,
10299
10311
(
2003
).
14.
A.
Falenty
,
A. N.
Salamatin
, and
W. F.
Kuhs
, “
Kinetics of CO2-hydrate formation from ice powders: Data summary and modeling extended to low temperatures
,”
J. Phys. Chem. C
117
,
8443
8457
(
2013
).
15.
S. F.
Dec
. “
Clathrate hydrate formation: Dependence on aqueous hydration number
,”
J. Phys. Chem. C
113
,
12355
12361
(
2009
);
Correction:
S. F.
Dec
.
J. Phys. Chem.
116
,
6504
(
2012
).
16.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
17.
J.
Vatamanu
and
P. G.
Kusalik
, “
Observation of two-step nucleation in methane hydrates
,”
Phys. Chem. Chem. Phys.
12
,
15065
15072
(
2010
).
18.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
3
,
2942
2947
(
2012
).
19.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Amorphous precursors in the nucleation of clathrate hydrates
,”
J. Am. Chem. Soc.
132
,
11806
11811
(
2010
).
20.
M.
Lauricella
,
G.
Ciccotti
,
N. J.
English
,
B.
Peters
, and
S.
Meloni
, “
Mechanisms and nucleation rate of methane hydrate by dynamical nonequilibrium molecular dynamics
,”
J. Phys. Chem. C
121
,
24223
24234
(
2017
).
21.
C.
Moon
,
P. C.
Taylor
, and
P. M.
Rodger
, “
Molecular dynamics study of gas hydrate formation
,”
J. Am. Chem. Soc.
125
,
4706
4707
(
2003
).
22.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Phys. Chem. C
115
,
21241
21248
(
2011
).
23.
R. V.
Belosludov
,
K. V.
Gets
,
R. K.
Zhdanov
,
Y. Y.
Bozhko
,
V. R.
Belosludov
,
L.-J.
Chen
, and
Y.
Kawazoe
, “
Molecular dynamics study of clathrate-like ordering of water in supersaturated methane solution at low pressure
,”
Molecules
28
,
2960
(
2023
).
24.
L.
Li
,
J.
Zhong
,
Y.
Yan
,
J.
Zhang
,
J.
Xu
,
J. S.
Francisco
, and
X. C.
Zeng
, “
Unraveling nucleation pathway in methane clathrate formation
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
24701
24708
(
2020
).
25.
G.-J.
Guo
,
M.
Li
,
Y.-G.
Zhang
, and
C.-H.
Wu
, “
Why can water adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms
,”
Phys. Chem. Chem. Phys.
11
,
10427
10437
(
2009
).
26.
M. R.
Walsh
,
J. D.
Rainey
,
P. G.
Lafond
,
D.-H.
Park
,
G. T.
Beckham
,
M. D.
Jones
,
K.-H.
Lee
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
The cages, dynamics, and structuring of incipient methane clathrate hydrates
,”
Phys. Chem. Chem. Phys.
13
,
19951
15959
(
2011
).
27.
Z.
Zhang
,
M. R.
Walsh
, and
G.-J.
Guo
, “
Microcanonical molecular simulations of methane hydrate nucleation and growth: Evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways
,”
Phys. Chem. Chem. Phys.
17
,
8870
8876
(
2015
).
28.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Formation of clathrate hydrates of water-soluble guest molecules
,”
J. Phys. Chem. C
120
,
21512
21521
(
2016
).
29.
D.
Bai
,
G.
Chen
,
X.
Zhang
, and
W.
Wang
, “
Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces
,”
Langmuir
27
,
5961
5967
(
2011
).
30.
D.
Bai
,
G.
Chen
,
X.
Zhang
, and
W.
Wang
, “
Nucleation of the CO2 hydrate from three-phase contact lines
,”
Langmuir
28
,
7730
7736
(
2012
).
31.
D.
Bai
,
G.
Chen
,
X.
Zhang
,
A. K.
Sum
, and
W.
Wang
, “
How properties of solid surfaces modulate the nucleation of gas hydrate
,”
Sci. Rep.
5
(
1
),
12747
(
2015
).
32.
S.
Jahnert
,
F.
Vaca Chavez
,
G. E.
Schaumann
,
A.
Schreiber
,
M.
Schonhoff
, and
G. H.
Findenegg
, “
Melting and freezing of water in cylindrical silica nanopores
,”
Phys. Chem. Chem. Phys.
10
,
6039
6051
(
2008
).
33.
G. H.
Findenegg
,
S.
Jahnert
,
D.
Akcakayiran
, and
A.
Schreiber
, “
Freezing and melting of water confined in silica nanopores
,”
ChemPhysChem
9
,
2651
2659
(
2008
).
34.
M.
Brodrecht
,
E.
Klotz
,
C.
Lederle
,
H.
Breitzke
,
B.
Stuhn
,
M.
Vogel
, and
G.
Buntkowsky
, “
A combined solid-state NMR, dielectric spectroscopy and calorimetric study of water in lowly hydrated MCM-41 samples
,”
Z. Phys. Chem.
232
,
1003
1015
(
2018
).
35.
M.
Sattig
,
S.
Reutter
,
F.
Fujara
,
M.
Werner
,
G.
Buntkowsky
, and
M.
Vogel
, “
NMR studies on the temperature-dependent dynamics of confined water
,”
Phys. Chem. Chem. Phys.
16
,
19229
19240
(
2014
).
36.
J.
Rault
,
R.
Neffati
, and
P.
Judeinstein
, “
Melting of ice in porous glass: Why water and solvents confined in small pores do not crystallize?
,”
The European Physical Journal B - Condensed Matter
36
,
627
637
(
2003
).
37.
Y. P.
Handa
,
M.
Zakrzewski
, and
C.
Fairbridge
, “
Effect of restricted geometries on the structure and thermodynamic properties of ice
,”
J. Phys. Chem.
96
,
8594
8599
(
1992
).
38.
X.
Zhu
,
M.
Vandamme
,
Z.
Jiang
, and
L.
Brochard
, “
Molecular simulation of the confined crystallization of ice in cement nanopore
,”
J. Chem. Phys.
159
,
154704
(
2023
).
39.
N.
Floquet
,
J. P.
Coulomb
,
N.
Dufau
,
G.
Andre
, and
R.
Kahn
, “
Confined water in mesoporous MCM-41 and nanoporous AlPO4-5: Structure and dynamics
,”
Adsorption
11
(
S1
),
139
144
(
2005
).
40.
M.
Rescigno
,
M.
Lucioli
,
F. G.
Alabarse
,
U.
Ranieri
,
B.
Frick
,
B.
Coasne
, and
L. E.
Bove
, “
Low-temperature dynamics of water confined in unidirectional hydrophilic zeolite nanopores
,”
J. Phys. Chem. B
127
,
4570
4576
(
2023
).
41.
H.
Bian
,
L.
Ai
,
K.
Hellgardt
,
G. C.
Maitland
, and
J. Y. Y.
Heng
, “
Phase behaviour of methane hydrates in confined media
,”
Crystals
11
,
201
(
2021
).
42.
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Specialized methods of nuclear magnetic resonance spectroscopy and magnetic resonance imaging applied to characterization of clathrate hydrates
,” in
Clathrate Hydrates: Molecular Science and Characterization
, edited by
J. A.
Ripmeester
and
S.
Alavi
(
Wiley
,
Weinheim, Germany
,
2022
).
43.
V.
Beschieru
,
B.
Rathke
, and
S.
Will
, “
Particle diffusion in porous media investigated by dynamic light scattering
,”
Microporous Mesoporous Mater.
125
,
63
69
(
2009
).
44.
M.
Tiemann
and
C.
Weinberger
, “
Selective modification of hierarchical pores and surfaces in nanoporous materials
,”
Adv. Mater. Interfaces
8
,
2001153
(
2021
).
45.
W.
Zhang
,
C. I.
Ratcliffe
,
I. L.
Moudrakovski
,
J. S.
Tse
,
C.-Y.
Mou
, and
J. A.
Ripmeester
, “
Characterization of the location and interfacial states of gallium in gallium/MCM-41 composites
,”
Microporous Mesoporous Mater.
79
,
195
203
(
2005
).
46.
M.
Kruk
,
M.
Jaroniec
, and
A.
Sayari
, “
New insights into pore-size expansion of mesoporous silicates using long-chain amines
,”
Microporous Mesoporous Mater.
35–36
,
545
553
(
2000
).
47.
D.
Massiot
,
F.
Fayon
,
M.
Capron
,
I.
King
,
S.
Le Calvé
,
B.
Alonso
,
J.-O.
Durand
,
B.
Bujoli
,
Z.
Gan
, and
G.
Hoatson
, “
Modelling one- and two-dimensional solid state NMR spectra
,”
Magn. Reson. Chem.
40
,
70
76
(
2002
).
48.
I. L.
Moudrakovski
,
Y.-T.
Seo
,
G. E.
McLaurin
, and
J. A.
Ripmeester
, “
13C NMR and 1H NMR microimaging of CH4 and CO2 gas hydrates formation
,” in
46th Rocky Mountain Conference on Analytical Chemistry, Rocky Mountain Conference on Magnetic Resonance
(
University of Denver
,
2004
), Vol.
46
, Abst. 226, p.
116
, https://digitalcommons.du.edu/rockychem/vol46/iss1/1.
49.
J. A.
Ripmeester
,
C. I.
Ratcliffe
, and
J. S.
Tse
, “
The nuclear magnetic resonance of 129Xe trapped in clathrates and some other solids
,”
J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases
84
,
3731
3745
(
1988
).
50.
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Characterization of clathrate hydrates using nuclear magnetic resonance spectroscopy
,” in
Clathrate Hydrates: Molecular Science and Characterization
, edited by
J. A.
Ripmeester
and
S.
Alavi
(
Wiley
,
Weinheim, Germany
,
2022
), Chap. 10, Vol.
2
.
51.
L.
Yang
,
C. A.
Tulk
,
D. D.
Klug
,
I. L.
Moudrakovski
,
C. I.
Ratcliffe
,
J. A.
Ripmeester
,
B. C.
Chakoumakos
,
L.
Ehm
,
C. D.
Martin
, and
J. B.
Parise
, “
Synthesis and characterization of a new structure of gas hydrate
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
6060
6064
(
2009
).
52.
Y.
Liu
and
L.
Ojamäe
, “
13C chemical shift in natural gas hydrates from first-principles solid-state NMR calculations
,”
J. Phys. Chem. C
120
,
1130
1136
(
2016
).
53.
M. J.
Duer
, “
Essential techniques for spin-1/2 nuclei
,” in
Solid State NMR Spectroscopy Principles and Applications
, edited by
M. J.
Duer
(
Blackwell Science Ltd.
,
Oxford
,
2002
), Chap. 2, p.
102
.
54.
S. F.
Dec
,
K. E.
Bowler
,
L. L.
Stadterman
,
C. A.
Koh
, and
E. D.
Sloan
, “
Direct measure of the hydration number of aqueous methane
,”
J. Am. Chem. Soc.
128
,
414
415
(
2006
).
55.
H.
Nakayama
,
D. D.
Klug
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Ordering and clathrate hydrate formation in co-deposits of xenon and water at low temperatures
,”
Chem.-Eur. J.
9
,
2969
2973
(
2003
).
56.
J.
Vatamanu
and
P. G.
Kusalik
, “
Unusual crystalline and polycrystalline structures in methane hydrates
,”
J. Am. Chem. Soc.
128
,
15588
15589
(
2006
).
You do not currently have access to this content.