The boson peak (BP), a low-energy excess in the vibrational density of states over the Debye contribution, is often identified as a characteristic of amorphous solid materials. Despite decades of efforts, its microscopic origin still remains a mystery. Recently, it has been proposed, and corroborated with simulations, that the BP might stem from intrinsic localized modes involving one-dimensional (1D) string-like excitations (“stringlets”). We build on a theory originally proposed by Lund that describes the localized modes as 1D vibrating strings, but we specify the stringlet size distribution to be exponential, as observed in simulations. We provide an analytical prediction for the BP frequency ωBP in the temperature regime well below the observed glass transition temperature Tg. The prediction involves no free parameters and accords quantitatively with prior simulation observations in 2D and 3D model glasses based on inverse power law potentials. The comparison of the string model to observations is more uncertain when compared to simulations of an Al–Sm metallic glass material at temperatures well above Tg. Nonetheless, our stringlet model of the BP naturally reproduces the softening of the BP frequency upon heating and offers an analytical explanation for the experimentally observed scaling with the shear modulus in the glass state and changes in this scaling in simulations of glass-forming liquids. Finally, the theoretical analysis highlights the existence of a strong damping for the stringlet modes above Tg, which leads to a large low-frequency contribution to the 3D vibrational density of states, observed in both experiments and simulations.

1.
R. C.
Zeller
and
R. O.
Pohl
, “
Thermal conductivity and specific heat of noncrystalline solids
,”
Phys. Rev. B
4
,
2029
2041
(
1971
).
2.
M. A.
Ramos
,
Low-Temperature Thermal and Vibrational Properties of Disordered Solids
(
World Scientific
,
Europe
,
2022
).
3.
M. A.
Ramos
, “
Are universal ‘anomalous’ properties of glasses at low temperatures truly universal?
,”
Low Temp. Phys.
46
,
104
110
(
2020
).
4.
S.
Alexander
, “
Amorphous solids: Their structure, lattice dynamics and elasticity
,”
Phys. Rep.
296
,
65
236
(
1998
).
5.
T.
Takabatake
,
K.
Suekuni
,
T.
Nakayama
, and
E.
Kaneshita
, “
Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory
,”
Rev. Mod. Phys.
86
,
669
716
(
2014
).
6.
M.
Moratalla
,
J. F.
Gebbia
,
M. A.
Ramos
,
L. C.
Pardo
,
S.
Mukhopadhyay
,
S.
Rudić
,
F.
Fernandez-Alonso
,
F. J.
Bermejo
, and
J. L.
Tamarit
, “
Emergence of glassy features in halomethane crystals
,”
Phys. Rev. B
99
,
024301
(
2019
).
7.
M.
Baggioli
and
A.
Zaccone
, “
Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials
,”
Phys. Rev. Lett.
122
,
145501
(
2019
).
8.
S. R.
Elliott
, “
A unified model for the low-energy vibrational behaviour of amorphous solids
,”
Europhys. Lett.
19
,
201
(
1992
).
9.
W.
Schirmacher
, “
Thermal conductivity of glassy materials and the ‘boson peak
,’”
Europhys. Lett.
73
,
892
(
2006
).
10.
W.
Schirmacher
,
G.
Ruocco
, and
T.
Scopigno
, “
Acoustic attenuation in glasses and its relation with the boson peak
,”
Phys. Rev. Lett.
98
,
025501
(
2007
).
11.
W.
Schirmacher
,
G.
Ruocco
, and
V.
Mazzone
, “
Heterogeneous viscoelasticity: A combined theory of dynamic and elastic heterogeneity
,”
Phys. Rev. Lett.
115
,
015901
(
2015
).
12.
F.
Léonforte
,
A.
Tanguy
,
J. P.
Wittmer
, and
J.-L.
Barrat
, “
Inhomogeneous elastic response of silica glass
,”
Phys. Rev. Lett.
97
,
055501
(
2006
).
13.
U.
Buchenau
,
Y. M.
Galperin
,
V. L.
Gurevich
, and
H. R.
Schober
, “
Anharmonic potentials and vibrational localization in glasses
,”
Phys. Rev. B
43
,
5039
5045
(
1991
).
14.
V. L.
Gurevich
,
D. A.
Parshin
, and
H. R.
Schober
, “
Anharmonicity, vibrational instability, and the boson peak in glasses
,”
Phys. Rev. B
67
,
094203
(
2003
).
15.
D. A.
Parshin
,
H. R.
Schober
, and
V. L.
Gurevich
, “
Vibrational instability, two-level systems, and the boson peak in glasses
,”
Phys. Rev. B
76
,
064206
(
2007
).
16.
W.
Götze
and
M. R.
Mayr
, “
Evolution of vibrational excitations in glassy systems
,”
Phys. Rev. E
61
,
587
606
(
2000
).
17.
S. N.
Taraskin
,
Y. L.
Loh
,
G.
Natarajan
, and
S. R.
Elliott
, “
Origin of the boson peak in systems with lattice disorder
,”
Phys. Rev. Lett.
86
,
1255
1258
(
2001
).
18.
A. I.
Chumakov
,
G.
Monaco
,
A.
Monaco
,
W. A.
Crichton
,
A.
Bosak
,
R.
Rüffer
,
A.
Meyer
,
F.
Kargl
,
L.
Comez
,
D.
Fioretto
,
H.
Giefers
,
S.
Roitsch
,
G.
Wortmann
,
M. H.
Manghnani
,
A.
Hushur
,
Q.
Williams
,
J.
Balogh
,
K.
Parliński
,
P.
Jochym
, and
P.
Piekarz
, “
Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals
,”
Phys. Rev. Lett.
106
,
225501
(
2011
).
19.
Y.
Galperin
,
V.
Karpov
, and
V.
Kozub
, “
Localized states in glasses
,”
Adv. Phys.
38
,
669
737
(
1989
).
20.
M. I.
Klinger
and
A. M.
Kosevich
, “
Soft-mode dynamics model of boson peak and high frequency sound in glasses: ‘Inelastic’ Ioffe–Regel crossover and strong hybridization of excitations
,”
Phys. Lett. A
295
,
311
317
(
2002
).
21.
T. S.
Grigera
,
V.
Martín-Mayor
,
G.
Parisi
, and
P.
Verrocchio
, “
Phonon interpretation of the ‘boson peak’ in supercooled liquids
,”
Nature
422
,
289
292
(
2003
).
22.
H. R.
Schober
and
C.
Oligschleger
, “
Low-frequency vibrations in a model glass
,”
Phys. Rev. B
53
,
11469
11480
(
1996
).
23.
E.
Lerner
and
E.
Bouchbinder
, “
Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations
,”
J. Chem. Phys.
158
,
194503
(
2023
); arXiv:2210.10326 [cond-mat.soft].
24.
E.
Lerner
and
E.
Bouchbinder
, “
Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations
,”
J. Chem. Phys.
158
,
194503
(
2023
).
25.
A.
Moriel
,
E.
Lerner
, and
E.
Bouchbinder
, “
The boson peak in the vibrational spectra of glasses
,”
Phys. Rev. Res.
6
,
023053
(
2023
); arXiv:2304.03661 [cond-mat.dis-nn].
26.
C.
Rainone
,
P.
Urbani
,
F.
Zamponi
,
E.
Lerner
, and
E.
Bouchbinder
, “
Mean-field model of interacting quasilocalized excitations in glasses
,”
SciPost Phys. Core
4
,
008
(
2021
).
27.
D. C.
Vural
and
A. J.
Leggett
, “
Universal sound absorption in amorphous solids: A theory of elastically coupled generic blocks
,”
J. Non-Cryst. Solids
357
,
3528
3537
(
2011
).
28.
H. R.
Schober
,
C.
Oligschleger
, and
B. B.
Laird
, “
Low-frequency vibrations and relaxations in glasses
,”
J. Non-Cryst. Solids
156–158
,
965
968
(
1993
).
29.
H.
Shintani
and
H.
Tanaka
, “
Universal link between the boson peak and transverse phonons in glass
,”
Nat. Mater.
7
,
870
877
(
2008
).
30.
Y. M.
Beltukov
,
V. I.
Kozub
, and
D. A.
Parshin
, “
Ioffe-Regel criterion and diffusion of vibrations in random lattices
,”
Phys. Rev. B
87
,
134203
(
2013
).
31.
B.
Rufflé
,
G.
Guimbretière
,
E.
Courtens
,
R.
Vacher
, and
G.
Monaco
, “
Glass-specific behavior in the damping of acousticlike vibrations
,”
Phys. Rev. Lett.
96
,
045502
(
2006
).
32.
H.
Zhang
,
X.
Wang
,
H.-B.
Yu
, and
J. F.
Douglas
, “
Fast dynamics in a model metallic glass-forming material
,”
J. Chem. Phys.
154
,
084505
(
2021
).
33.
H.
Zhang
and
J. F.
Douglas
, “
Glassy interfacial dynamics of Ni nanoparticles: Part II. Discrete breathers as an explanation of two-level energy fluctuations
,”
Soft Matter
9
,
1266
1280
(
2013
).
34.
H.
Zhang
and
J. F.
Douglas
, “
Glassy interfacial dynamics of Ni nanoparticles: Part I. Colored noise, dynamic heterogeneity and collective atomic motion
,”
Soft Matter
9
,
1254
1265
(
2013
).
35.
Y.-C.
Hu
and
H.
Tanaka
, “
Origin of the boson peak in amorphous solids
,”
Nat. Phys.
18
,
669
677
(
2022
).
36.
Y.-C.
Hu
and
H.
Tanaka
, “
Universality of stringlet excitations as the origin of the boson peak of glasses with isotropic interactions
,”
Phys. Rev. Res.
5
,
023055
(
2023
).
37.
B. A. P.
Betancourt
,
F. W.
Starr
, and
J. F.
Douglas
, “
String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt
,”
J. Chem. Phys.
148
,
104508
(
2018
).
38.
B. A. P.
Betancourt
,
P. Z.
Hanakata
,
F. W.
Starr
, and
J. F.
Douglas
, “
Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
2966
2971
(
2015
).
39.
J. F.
Douglas
,
B. A.
Pazmino Betancourt
,
X.
Tong
, and
H.
Zhang
, “
Localization model description of diffusion and structural relaxation in glass-forming Cu–Zr alloys
,”
J. Stat. Mech.: Theory Exp.
2016
,
054048
.
40.
G.
Winterling
, “
Very-low-frequency Raman scattering in vitreous silica
,”
Phys. Rev. B
12
,
2432
2440
(
1975
).
41.
T.
Scopigno
,
E.
Pontecorvo
,
R. D.
Leonardo
,
M.
Krisch
,
G.
Monaco
,
G.
Ruocco
,
B.
Ruzicka
, and
F.
Sette
, “
High-frequency transverse dynamics in glasses
,”
J. Phys.: Condens. Matter
15
,
S1269
(
2003
).
42.
Y.
Tian
,
X.
Shen
,
Q.
Gao
,
Z.
Lu
,
J.
Yang
,
Q.
Zheng
,
C. F.
Aleman
,
D.
Luo
,
A. H.
Reid
,
B.
Xu
et al, “
Structural origin of boson peak in glasses
,” arXiv:2111.10171 (
2021
).
43.
H. R.
Schober
, “
Vibrations and relaxations in a soft sphere glass: Boson peak and structure factors
,”
J. Phys.: Condens. Matter
16
,
S2659
(
2004
).
44.
V.
Novikov
, “
Spectrum of low-energy (2–10 meV) vibrational excitations of glasses in a disclination model
,”
JETP Lett.
51
,
55
(
1990
), https://jetpletters.ru/ps/1135/index.shtml.
45.
T.
Achibat
,
A.
Boukenter
, and
E.
Duval
, “
Correlation effects on Raman scattering from low-energy vibrational modes in glasses. II. Experimental results
,”
J. Chem. Phys.
99
,
2046
2051
(
1993
).
46.
A. P.
Sokolov
,
A.
Kisliuk
,
D.
Quitmann
, and
E.
Duval
, “
Evaluation of density of vibrational states of glasses from low-frequency Raman spectra
,”
Phys. Rev. B
48
,
7692
7695
(
1993
).
47.
N. V.
Surovtsev
,
S. V.
Adichtchev
,
E.
Rössler
, and
M. A.
Ramos
, “
Density of vibrational states and light-scattering coupling coefficient in the structural glass and glassy crystal of ethanol
,”
J. Phys.: Condens. Matter
16
,
223
(
2004
).
48.
C. A.
Angell
, “
Boson peaks and floppy modes: Some relations between constraint and excitation phenomenology, and interpretation, of glasses and the glass transition
,”
J. Phys.: Condens. Matter
16
,
S5153
(
2004
).
49.
M. H.
Bhat
,
I.
Peral
,
J. R.
Copley
, and
C. A.
Angell
, “
The boson peak in melt-formed and damage-formed glasses: A defect signature?
,”
J. Non-Cryst. Solids
352
,
4517
4524
(
2006
).
50.
M.
Baggioli
,
I.
Kriuchevskyi
,
T. W.
Sirk
, and
A.
Zaccone
, “
Plasticity in amorphous solids is mediated by topological defects in the displacement field
,”
Phys. Rev. Lett.
127
,
015501
(
2021
).
51.
M.
Baggioli
, “
Topological defects reveal the plasticity of glasses
,”
Nat. Commun.
14
,
2956
(
2023
).
52.
M.
Baggioli
,
M.
Landry
, and
A.
Zaccone
, “
Deformations, relaxation, and broken symmetries in liquids, solids, and glasses: A unified topological field theory
,”
Phys. Rev. E
105
,
024602
(
2022
).
53.
Z. W.
Wu
,
Y.
Chen
,
W.-H.
Wang
,
W.
Kob
, and
L.
Xu
, “
Topology of vibrational modes predicts plastic events in glasses
,”
Nat. Commun.
14
,
2955
(
2023
).
54.
V. K.
Malinovsky
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Log-normal spectrum of low-energy vibrational excitations in glasses
,”
Phys. Lett. A
153
,
63
66
(
1991
).
55.
F.
Lund
, “
Normal modes and acoustic properties of an elastic solid with line defects
,”
Phys. Rev. B
91
,
094102
(
2015
).
56.
A.
Granato
and
K.
Lücke
, “
Theory of mechanical damping due to dislocations
,”
J. Appl. Phys.
27
,
583
593
(
1956
).
57.
E.
Bianchi
,
V. M.
Giordano
, and
F.
Lund
, “
Elastic anomalies in glasses: Elastic string theory understanding of the cases of glycerol and silica
,”
Phys. Rev. B
101
,
174311
(
2020
).
58.
A.
Maurel
,
V.
Pagneux
,
F.
Barra
, and
F.
Lund
, “
Interaction between an elastic wave and a single pinned dislocation
,”
Phys. Rev. B
72
,
174110
(
2005
).
59.
B. A.
Pazmiño Betancourt
,
J. F.
Douglas
, and
F. W.
Starr
, “
String model for the dynamics of glass-forming liquids
,”
J. Chem. Phys.
140
,
204509
(
2014
).
60.
L.
Hong
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids
,”
Phys. Rev. E
83
,
061508
(
2011
).
61.
L.
Hong
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Is there a connection between fragility of glass forming systems and dynamic heterogeneity/cooperativity?
,”
J. Non-Cryst. Solids
357
,
351
356
(
2011
).
62.
N.
Tomoshige
,
H.
Mizuno
,
T.
Mori
,
K.
Kim
, and
N.
Matubayasi
, “
Boson peak, elasticity, and glass transition temperature in polymer glasses: Effects of the rigidity of chain bending
,”
Sci. Rep.
9
,
19514
(
2019
).
63.
U.
Buchenau
, “
Soft modes in undercooled liquids
,”
J. Mol. Struct.
296
,
275
283
(
1993
).
64.
A.
Cano
and
A. P.
Levanyuk
, “
Explanation of the glasslike anomaly in the low-temperature specific heat of incommensurate phases
,”
Phys. Rev. Lett.
93
,
245902
(
2004
).
65.
M.
Baggioli
and
A.
Zaccone
, “
Low-energy optical phonons induce glassy-like vibrational and thermal anomalies in ordered crystals
,”
J. Phys.: Mater.
3
,
015004
(
2019
).
66.
M.
Baggioli
and
A.
Zaccone
, “
Hydrodynamics of disordered marginally stable matter
,”
Phys. Rev. Res.
1
,
012010
(
2019
).
67.
M.
Baggioli
and
A.
Zaccone
, “
New paradigm for glassy-like anomalies in solids from fundamental symmetries
,”
Int. J. Mod. Phys. B
35
,
2130002
(
2021
).
68.
C.
Jiang
,
A.
Zaccone
,
C.
Setty
, and
M.
Baggioli
, “
Glassy heat capacity from overdamped phasons and hypothetical phason-induced superconductivity in incommensurate structures
,”
Phys. Rev. B
108
,
054203
(
2023
).
69.
V. N.
Novikov
and
N. V.
Surovtsev
, “
Spatial structure of boson peak vibrations in glasses
,”
Phys. Rev. B
59
,
38
41
(
1999
).
70.
A.
Maurel
,
V.
Pagneux
,
F.
Barra
, and
F.
Lund
, “
Wave propagation through a random array of pinned dislocations: Velocity change and attenuation in a generalized Granato and Lücke theory
,”
Phys. Rev. B
72
,
174111
(
2005
).
71.
A. V.
Granato
, “
Interstitialcy model for condensed matter states of face-centered-cubic metals
,”
Phys. Rev. Lett.
68
,
974
977
(
1992
).
72.
A. G.
Kalampounias
,
S. N.
Yannopoulos
, and
G. N.
Papatheodorou
, “
A high-temperature Raman spectroscopic investigation of the potassium tetrasilicate in glassy, supercooled, and liquid states
,”
J. Chem. Phys.
125
,
164502
(
2006
).
73.
V. K.
Malinovsky
,
V. N.
Novikov
,
A. P.
Sokolov
, and
V. A.
Bagryansky
, “
Light scattering by fractons in polymers
,”
Chem. Phys. Lett.
143
,
111
114
(
1988
).
74.
V.
Malinovsky
and
A.
Sokolov
, “
The nature of boson peak in Raman scattering in glasses
,”
Solid State Commun.
57
,
757
761
(
1986
).
75.
A. J.
Maktin
and
W.
Brenig
, “
Model for Brillouin scattering in amorphous solids
,”
Phys. Status Solidi B
64
,
163
172
(
1974
).
76.
G.
Adam
and
J. H.
Gibbs
, “
On the temperature dependence of cooperative relaxation properties in glass-forming liquids
,”
J. Chem. Phys.
43
,
139
146
(
1965
).
77.
M.
Russina
,
F.
Mezei
,
R.
Lechner
,
S.
Longeville
, and
B.
Urban
, “
Experimental evidence for fast heterogeneous collective structural relaxation in a supercooled liquid near the glass transition
,”
Phys. Rev. Lett.
84
,
3630
3633
(
2000
).
78.
A. P.
Sokolov
,
A.
Kisliuk
,
M.
Soltwisch
, and
D.
Quitmann
, “
Medium-range order in glasses: Comparison of Raman and diffraction measurements
,”
Phys. Rev. Lett.
69
,
1540
1543
(
1992
).
79.
A. P.
Sokolov
,
R.
Calemczuk
,
B.
Salce
,
A.
Kisliuk
,
D.
Quitmann
, and
E.
Duval
, “
Low-temperature anomalies in strong and fragile glass formers
,”
Phys. Rev. Lett.
78
,
2405
2408
(
1997
).
80.
C.
Donati
,
J. F.
Douglas
,
W.
Kob
,
S. J.
Plimpton
,
P. H.
Poole
, and
S. C.
Glotzer
, “
Stringlike cooperative motion in a supercooled liquid
,”
Phys. Rev. Lett.
80
,
2338
2341
(
1998
).
81.
H.
Zhang
,
X.
Wang
,
H.-B.
Yu
, and
J. F.
Douglas
, “
Dynamic heterogeneity, cooperative motion, and Johari–Goldstein β-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition
,”
Eur. Phys. J. E
44
,
56
(
2021
).
82.
E.
Lerner
and
E.
Bouchbinder
, “
Low-energy quasilocalized excitations in structural glasses
,”
J. Chem. Phys.
155
,
200901
(
2021
).
83.
W. A.
Phillips
,
U.
Buchenau
,
N.
Nücker
,
A.-J.
Dianoux
, and
W.
Petry
, “
Dynamics of glassy and liquid selenium
,”
Phys. Rev. Lett.
63
,
2381
2384
(
1989
).
84.
C.
Stamper
,
D.
Cortie
,
Z.
Yue
,
X.
Wang
, and
D.
Yu
, “
Experimental confirmation of the universal law for the vibrational density of states of liquids
,”
J. Phys. Chem. Lett.
13
,
3105
3111
(
2022
).
85.
S.
Jin
,
X.
Fan
,
C.
Stamper
,
R. A.
Mole
,
Y.
Yu
,
L.
Hong
,
D.
Yu
, and
M.
Baggioli
, “
On the temperature dependence of the density of states of liquids at low energies
,” arXiv:2304.14609 (
2023
).
86.
T.
Keyes
, “
Instantaneous normal mode approach to liquid state dynamics
,”
J. Phys. Chem. A
101
,
2921
2930
(
1997
).
87.
A.
Zaccone
and
M.
Baggioli
, “
Universal law for the vibrational density of states of liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2022303118
(
2021
).
88.
H.
Miyagawa
,
Y.
Hiwatari
,
B.
Bernu
, and
J. P.
Hansen
, “
Molecular dynamics study of binary soft-sphere mixtures: Jump motions of atoms in the glassy state
,”
J. Chem. Phys.
88
,
3879
3886
(
1988
).
89.
B.
Rufflé
,
S.
Ayrinhac
,
E.
Courtens
,
R.
Vacher
,
M.
Foret
,
A.
Wischnewski
, and
U.
Buchenau
, “
Scaling the temperature-dependent boson peak of vitreous silica with the high-frequency bulk modulus derived from Brillouin scattering data
,”
Phys. Rev. Lett.
104
,
067402
(
2010
).
90.
A. I.
Chumakov
,
I.
Sergueev
,
U.
van Bürck
,
W.
Schirmacher
,
T.
Asthalter
,
R.
Rüffer
,
O.
Leupold
, and
W.
Petry
, “
Collective nature of the boson peak and universal transboson dynamics of glasses
,”
Phys. Rev. Lett.
92
,
245508
(
2004
).
91.
M.
Zanatta
,
C.
Armellini
,
A.
Fontana
, and
F.
Rossi
, “
Temperature evolution of the boson peak and Debye scaling in vitreous B2O3
,”
Philos. Mag.
91
,
2028
2033
(
2011
).
92.
M.
González-Jiménez
,
T.
Barnard
,
B. A.
Russell
,
N. V.
Tukachev
,
U.
Javornik
,
L.-A.
Hayes
,
A. J.
Farrell
,
S.
Guinane
,
H. M.
Senn
,
A. J.
Smith
,
M.
Wilding
,
G.
Mali
,
M.
Nakano
,
Y.
Miyazaki
,
P.
McMillan
,
G. C.
Sosso
, and
K.
Wynne
, “
Understanding the emergence of the boson peak in molecular glasses
,”
Nat. Commun.
14
,
215
(
2023
).
93.
G.
Reményi
,
S.
Sahling
,
K.
Biljaković
,
D.
Starešinić
,
J.-C.
Lasjaunias
,
J. E.
Lorenzo
,
P.
Monceau
, and
A.
Cano
, “
Incommensurate systems as model compounds for disorder revealing low-temperature glasslike behavior
,”
Phys. Rev. Lett.
114
,
195502
(
2015
).
94.
J.
Etrillard
,
J. C.
Lasjaunias
,
K.
Biljakovic
,
B.
Toudic
, and
G.
Coddens
, “
Excess low temperature specific heat and related phonon density of states in a modulated incommensurate dielectric
,”
Phys. Rev. Lett.
76
,
2334
2337
(
1996
).
95.
K.
Biljaković
,
D.
Starešinić
,
J.
Lasjaunias
,
G.
Remenyi
,
R.
Mélin
,
P.
Monceau
, and
S.
Sahling
, “
Charge density glass dynamics—Soft potentials and soft modes
,”
Physica B
407
,
1741
1745
(
2012
).
96.
H.
Zhang
,
X.
Wang
,
A.
Chremos
, and
J. F.
Douglas
, “
Superionic UO2: A model anharmonic crystalline material
,”
J. Chem. Phys.
150
,
174506
(
2019
).
97.
J. B.
Suck
,
H.
Rudin
,
H. J.
Guntherodt
,
H.
Beck
,
J.
Daubert
, and
W.
Glaser
, “
Dynamical structure factor and frequency distribution of the metallic glass Cu46Zr54 at room temperature
,”
J. Phys. C: Solid State Phys.
13
,
L167
(
1980
).
98.
B.
Madan
and
T.
Keyes
, “
Unstable modes in liquids density of states, potential energy, and heat capacity
,”
J. Chem. Phys.
98
,
3342
3350
(
1993
).
99.
V. I.
Clapa
,
T.
Kottos
, and
F. W.
Starr
, “
Localization transition of instantaneous normal modes and liquid diffusion
,”
J. Chem. Phys.
136
,
144504
(
2012
).
100.
V. N.
Novikov
, “
Phonon-density fluctuations and fast relaxation in glasses
,”
Phys. Rev. B
55
,
R14685
R14688
(
1997
).
101.
K. L.
Ngai
,
A.
Sokolov
, and
W.
Steffen
, “
Correlations between boson peak strength and characteristics of local segmental relaxation in polymers
,”
J. Chem. Phys.
107
,
5268
5272
(
1997
).
102.
X.
Xu
,
J. F.
Douglas
, and
W.-S.
Xu
, “
Parallel emergence of rigidity and collective motion in a family of simulated glass-forming polymer fluids
,”
Macromolecules
56
,
4929
4951
(
2023
).
103.
S.
Caponi
,
A.
Fontana
,
F.
Rossi
, and
M.
Zanatta
, “
Influence of temperature on quasi-elastic scattering in GeO2 glass
,”
Philos. Mag.
91
,
1887
1893
(
2011
).
104.
K.
Niss
,
B.
Begen
,
B.
Frick
,
J.
Ollivier
,
A.
Beraud
,
A.
Sokolov
,
V. N.
Novikov
, and
C.
Alba-Simionesco
, “
Influence of pressure on the boson peak: Stronger than elastic medium transformation
,”
Phys. Rev. Lett.
99
,
055502
(
2007
).
105.
M.
Ahart
,
D.
Aihaiti
,
R. J.
Hemley
, and
S.
Kojima
, “
Pressure dependence of the boson peak of glassy glycerol
,”
J. Phys. Chem. B
121
,
6667
6672
(
2017
).
106.
E.
Lerner
,
G.
Düring
, and
E.
Bouchbinder
, “
Statistics and properties of low-frequency vibrational modes in structural glasses
,”
Phys. Rev. Lett.
117
,
035501
(
2016
).
107.
H.
Mizuno
,
H.
Shiba
, and
A.
Ikeda
, “
Continuum limit of the vibrational properties of amorphous solids
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E9767
E9774
(
2017
).
108.
J. F.
Douglas
,
J.
Dudowicz
, and
K. F.
Freed
, “
Lattice model of equilibrium polymerization. VII. Understanding the role of ‘cooperativity’ in self-assembly
,”
J. Chem. Phys.
128
,
224901
(
2008
).
109.
J. F.
Douglas
,
J.
Dudowicz
, and
K. F.
Freed
, “
Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
,”
J. Chem. Phys.
125
,
144907
(
2006
).
110.
A. G.
Kalampounias
,
S. N.
Yannopoulos
, and
G. N.
Papatheodorou
, “
Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150 K
,”
J. Chem. Phys.
124
,
014504
(
2006
).
111.
S.
Takeno
and
A. J.
Sievers
, “
Anharmonic resonant modes in perfect crystals
,”
Solid State Commun.
67
,
1023
1026
(
1988
).
112.
Z.-Y.
Yang
,
Y.-J.
Wang
, and
A.
Zaccone
, “
Correlation between vibrational anomalies and emergent anharmonicity of the local potential energy landscape in metallic glasses
,”
Phys. Rev. B
105
,
014204
(
2022
).
113.
D. A.
Ackerman
,
D.
Moy
,
R. C.
Potter
,
A. C.
Anderson
, and
W. N.
Lawless
, “
Glassy behavior of crystalline solids at low temperatures
,”
Phys. Rev. B
23
,
3886
3893
(
1981
).
114.
J. M.
Schliesser
and
B. F.
Woodfield
, “
Development of a Debye heat capacity model for vibrational modes with a gap in the density of states
,”
J. Phys.: Condens. Matter
27
,
285402
(
2015
).
115.
A. I.
Krivchikov
,
A.
Jeżowski
,
D.
Szewczyk
,
O. A.
Korolyuk
,
O. O.
Romantsova
,
L. M.
Buravtseva
,
C.
Cazorla
, and
J. L.
Tamarit
, “
Role of optical phonons and anharmonicity in the appearance of the heat capacity boson peak-like anomaly in fully ordered molecular crystals
,”
J. Phys. Chem. Lett.
13
,
5061
5067
(
2022
).
116.
G. S.
Grest
,
S. R.
Nagel
, and
A.
Rahman
, “
Longitudinal and transverse excitations in a glass
,”
Phys. Rev. Lett.
49
,
1271
1274
(
1982
).
117.
J. B.
Suck
,
H.
Rudin
,
H. J.
Güntherodt
, and
H.
Beck
, “
Experimental investigation of the dispersion of collective density fluctuations near Qp in a metallic glass
,”
Phys. Rev. Lett.
50
,
49
52
(
1983
).
118.
I. M.
de Schepper
,
P.
Verkerk
,
A. A.
van Well
, and
L. A.
de Graaf
, “
Non-analytic dispersion relations in liquid argon
,”
Phys. Lett. A
104
,
29
32
(
1984
).
119.
N. G. C.
Astrath
,
M. L.
Baesso
,
A. C.
Bento
, and
L. R.
Evangelista
, “
Boson elementary excitations and the specific heat of non-crystalline solids: A short review
,”
J. Non-Cryst. Solids
352
,
3368
3379
(
2006
), part of the Special Issue: Glasses and Related Materials 7.
120.
N. P.
Kovalenko
and
Y. P.
Krasny
, “
On the low temperature anomaly of metal glass heat capacity I
,”
Physica B
162
,
115
121
(
1990
).
121.
Y. P.
Krasny
,
N. P.
Kovalenko
, and
J.
Krawczyk
, “
Phonon contribution to the absorption of ultrasound in amorphous solids at moderately low temperatures
,”
Physica B
254
,
92
98
(
1998
).
122.
A.
Zaccone
and
M.
Baggioli
, “
Erratum: Unified theory of vibrational spectra in hard amorphous materials [Phys. Rev. Research 2, 013267 (2020)]
,”
Phys. Rev. Res.
4
,
029001
(
2022
).
123.
V. A.
Khonik
, “
Heritage of Professor A. V. Granato: Interstitialcy theory, its origins and current state
,”
J. Alloys Compd.
853
,
157067
(
2021
).
124.
I.
Santos
,
M.
Ruiz
,
M.
Aboy
,
L. A.
Marqués
,
P.
López
, and
L.
Pelaz
, “
Identification of extended defect atomic configurations in silicon through transmission electron microscopy image simulation
,”
J. Electron. Mater.
47
,
4955
4958
(
2018
).
125.
D. K.
Campbell
, “
Fresh breather
,”
Nature
432
,
455
456
(
2004
).
126.
S.
Flach
,
M. V.
Ivanchenko
, and
O. I.
Kanakov
, “
q-breathers in Fermi-Pasta-Ulam chains: Existence, localization, and stability
,”
Phys. Rev. E
73
,
036618
(
2006
).
127.
M.
Peyrard
, “
The pathway to energy localization in nonlinear lattices
,”
Physica D
119
,
184
199
(
1998
), part of the Special Issue: Localization in Nonlinear Lattices.
128.
M.
Peyrard
and
J.
Farago
, “
Nonlinear localization in thermalized lattices: Application to DNA
,”
Physica A
288
,
199
217
(
2000
), part of the Special Issue: Dynamics Days Asia-Pacific: First International Conference on NonLinear Science.
129.
S.
Flach
and
G.
Mutschke
, “
Slow relaxation and phase space properties of a conservative system with many degrees of freedom
,”
Phys. Rev. E
49
,
5018
(
1994
).
130.
M.
Peyrard
and
A. R.
Bishop
, “
Statistical mechanics of a nonlinear model for DNA denaturation
,”
Phys. Rev. Lett.
62
,
2755
2758
(
1989
).
131.
E.
Copeland
,
D.
Haws
,
S.
Holbraad
, and
R.
Rivers
, “
The statistical mechanics of interacting strings
,”
Physica A
179
,
507
530
(
1991
).
132.
G.
Kohring
,
R. E.
Shrock
, and
P.
Wills
, “
Role of vortex strings in the three-dimensional O(2) model
,”
Phys. Rev. Lett.
57
,
1358
1361
(
1986
).
133.
A. K.
Nguyen
and
A.
Sudbø
, “
Onsager loop transition and first-order flux-line lattice melting in high-Tc superconductors
,”
Phys. Rev. B
57
,
3123
3143
(
1998
).
134.
W. H.
Zurek
, “
Cosmological experiments in superfluid helium?
,”
Nature
317
,
505
508
(
1985
).
135.
N. D.
Antunes
,
L. M. A.
Bettencourt
, and
M.
Hindmarsh
, “
Thermodynamics of cosmic string densities in U(1) scalar field theory
,”
Phys. Rev. Lett.
80
,
908
911
(
1998
).
136.
N. D.
Antunes
and
L. M. A.
Bettencourt
, “
The length distribution of vortex strings in U(1) equilibrium scalar field theory
,”
Phys. Rev. Lett.
81
,
3083
3086
(
1998
).
You do not currently have access to this content.