Fourier-transform microwave spectroscopy has been applied for the 13C/18O-substituted tropolone to observe tunneling-rotation transitions as well as pure rotational transitions. The tunneling-rotation transitions were observed between the 13C-4 and -6 forms as well as between 13C-3 and -7, between 13C-1 and -2, and between 18O-8 and -9 (we denote these tunneling pairs as 13C-46, etc., below) although they have an asymmetric tunneling potential due to the difference in the zero point energy (ZPE). From the observed tunneling splittings ΔEij (0.9800–1.6824 cm−1), the differences in ZPE Δij for the 13C-46, -37, -12, and 18O-89 species are derived to be −0.1104, 0.5652, −1.3682, and 1.3897 cm−1 to agree well with the DFT calculation. The state mixing ratio of the tunneling states decreases drastically from (44%:56%) to (8.7%:91.3%) for 13C-46 and 18O-89 with an increase in the asymmetry Δij of the tunneling potential function. The observed tunneling-rotation interaction constants Fij decrease from 16.001 to 9.224 cm−1 as the differences in ZPE Δij increase, while the diagonal tunneling-rotation interaction constants Fu increase from 1.767 to 13.70 cm−1, explained well by the mixing ratio of the tunneling states.

1.
R. L.
Redington
,
Y.
Chen
,
G. J.
Scherer
, and
R. W.
Field
,
J. Chem. Phys.
88
,
627
(
1988
).
2.
H.
Sekiya
,
Y.
Nagashima
, and
Y.
Nishimura
,
J. Chem. Phys.
92
,
5761
(
1990
).
3.
H.
Sekiya
,
Y.
Nagashima
,
T.
Tsuji
,
Y.
Nishimura
,
A.
Mori
, and
H.
Takeshita
,
J. Phys. Chem.
95
(
10
),
311
(
1991
).
4.
M. A.
Rios
and
J.
Rodriguez
,
Can. J. Chem.
69
,
201
(
1991
).
5.
R. K.
Frost
,
F. C.
Hagemeister
,
C. A.
Arrington
,
T. S.
Zwier
, and
K. D.
Jordan
,
J. Chem. Phys.
105
,
2595
(
1996
).
6.
R. K.
Frost
,
F. C.
Hagemeister
,
C. A.
Arrington
,
D.
Schleppenbach
,
T. S.
Zwier
, and
K. D.
Jordan
,
J. Chem. Phys.
105
,
2605
(
1996
).
7.
K.
Tanaka
,
H.
Honjo
,
T.
Tanaka
,
H.
Kohguchi
,
Y.
Ohshima
, and
Y.
Endo
,
J. Chem. Phys.
110
,
1969
(
1999
).
8.
R. L.
Redington
,
T. E.
Redington
, and
J. M.
Montgomery
,
J. Chem. Phys.
113
,
2304
(
2000
).
9.
R. L.
Redington
and
R. L.
Sams
,
J. Phys. Chem. A
106
,
7494
(
2002
).
10.
R. L.
Redington
,
T. E.
Redington
,
T. A.
Blake
,
R. L.
Sams
, and
T. J.
Johnson
,
J. Chem. Phys.
122
,
224311
(
2005
).
11.
J. C.
Keske
,
W.
Lin
,
W. C.
Pringle
,
S. E.
Novick
,
T. A.
Blake
, and
D. F.
Plusquellic
,
J. Chem. Phys.
124
,
074309
(
2006
).
12.
D.
Murdock
,
L. A.
Burns
, and
P. H.
Vaccaro
,
J. Chem. Phys.
127
,
081101
(
2007
).
13.
R. L.
Redington
,
T. E.
Redington
, and
R. L.
Sams
,
J. Phys. Chem. A
112
,
1480
(
2008
).
14.
D.
Murdock
,
L. A.
Burns
, and
P. H.
Vaccaro
,
Phys. Chem. Chem. Phys.
12
,
8285
(
2010
).
15.
R. L.
Redington
and
C. W.
Bock
,
J. Phys. Chem.
95
(
10
),
284
(
1991
).
16.
M. V.
Vener
,
S.
Scheiner
, and
N. D.
Sokolov
,
J. Chem. Phys.
101
,
9755
(
1994
).
17.
J. J.
Paz
,
M.
Moreno
, and
J. M.
Lluch
,
J. Chem. Phys.
103
,
353
(
1995
).
18.
J. J.
Nash
,
T. S.
Zwier
, and
K. D.
Jordan
,
J. Chem. Phys.
102
,
5260
(
1995
).
19.
S.
Takada
and
H.
Nakamura
,
J. Chem. Phys.
102
,
3977
(
1995
);
Z.
Smedarchina
,
W.
Siebrand
, and
M. Z.
Sgierski
,
J. Chem. Phys.
104
,
1203
(
1996
).
20.
R. L.
Redington
,
J. Chem. Phys.
113
,
2319
(
2000
).
21.
K.
Giese
and
O.
Kuhn
,
J. Chem. Phys.
123
,
054315
(
2005
).
22.
L. A.
Burns
,
D.
Murdock
, and
P. H.
Vaccaro
,
J. Chem. Phys.
124
,
204307
(
2006
).
23.
M. J.
Wojcik
,
L.
Boda
, and
M.
Boczar
,
J. Chem. Phys.
130
,
164306
(
2009
).
24.
P.
Houston
,
R.
Conte
,
C.
Qu
, and
J. M.
Bowman
,
J. Chem. Phys.
153
,
024107
(
2020
).
25.
M.
Hayashi
,
H.
Matsubayashi
,
T.
Ichiyama
,
K.
Harada
, and
K.
Tanaka
,
J. Chem. Phys.
151
,
184304
(
2019
).
26.
K.
Tanaka
,
M.
Toshimitsu
,
K.
Harada
, and
T.
Tanaka
,
J. Chem. Phys.
120
,
3604
(
2004
).
27.
Y.
Ohshima
and
Y.
Endo
,
Chem. Phys. Lett.
256
,
635
(
1996
).
28.
C.
Cabezas
,
J.-C.
Guillemin
, and
Y.
Endo
,
J. Chem. Phys.
145
,
224314
(
2016
).
29.
K. M. T.
Yamada
and
S. C.
Ross
,
J. Mol. Struct.
795
,
84
(
2006
).
You do not currently have access to this content.