Azidoiron complexes serve as valuable photochemical precursors for catalytically active species containing high-valent iron. In bioinorganic chemistry, azido(tetraphenylporphinato)iron(III), i.e., [FeIII(tpp)(N3)] with tpp = 5, 10, 15, 20-tetraphenylporphyrin-21, 23-diido, constitutes the archetypal model system that was used to access for the first time the terminal nitridoiron core, FeV ≡ N, in the biomimetic redox-non-innocent ligand environment. So far, the light-induced dynamics leading to the oxidation of the metal and the release of dinitrogen from the N3-ligand have only been studied for precursors featuring redox-innocent auxiliary ligands that simplify the electronic structure change accompanying the photo-transformation. Here, we monitored the primary events of the above paradigmatic complex, following its optical excitation in the ultraviolet-to-visible spectral range using femtosecond spectroscopy with probing in both the UV–vis and mid-infrared regions. Following ultrafast Soret-excitation at 400 nm, the complex relaxes to the lowest excited sextet state by a first internal conversion in less than 200 fs. The excited state then undergoes vibrational relaxation on a time scale of roughly 2 ps before internally converting yet again to recover the sextet electronic ground state within 19.5 ps. Spectroscopic evidence is obtained neither for a transient occupation of the energetically lowest metal-centered state, 41A1, nor for vibrational relaxation in the ground-state. The primary processes seen here are thus in contrast to those previously derived from ultrafast UV-pump/vis-probe and UV-pump/XANES-probe spectroscopies for the halide congener [FeIII(tpp)(Cl)]. Any photochemical transformation of the complex arises from two-photon-induced dynamics.

1.
J.
Hohenberger
,
K.
Ray
, and
K.
Meyer
,
Nat. Commun.
3
,
720
(
2012
).
2.
M. P.
Mehn
and
J. C.
Peters
,
J. Inorg. Biochem.
100
,
634
(
2006
).
3.
L.
Que
and
W. B.
Tolman
,
Nature
455
,
333
(
2008
).
4.
B.
Meunier
,
Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations
(
Springer
,
Berlin, Heidelberg
,
2000
).
5.
J. F.
Berry
,
Comments Inorg. Chem.
30
,
28
(
2009
).
6.
J.
Rittle
and
M. T.
Green
,
Science
330
,
933
(
2010
).
7.
P. R.
Ortiz de Montellano
,
Cytochrome P450: Structure, Mechanism, and Biochemistry
(
Kluwer Academic/Plenum Publishers
,
New York
,
2005
).
8.
I. G.
Denisov
,
T. M.
Makris
,
S. G.
Sligar
, and
I.
Schlichting
,
Chem. Rev.
105
,
2253
(
2005
).
9.
S.
Shaik
,
S. P.
de Visser
, and
D.
Kumar
,
J. Biol. Inorg. Chem.
9
,
661
(
2004
).
10.
S.
Shaik
,
D.
Kumar
,
S. P.
de Visser
,
A.
Altun
, and
W.
Thiel
,
Chem. Rev.
105
,
2279
(
2005
).
11.
D.
Dolphin
and
R. H.
Felton
,
Acc. Chem. Res.
7
,
26
(
1974
).
12.
T. M.
Makris
,
K.
von Koenig
,
I.
Schlichting
, and
S. G.
Sligar
,
J. Inorg. Biochem.
100
,
507
(
2006
).
13.
W. D.
Wagner
and
K.
Nakamoto
,
J. Am. Chem. Soc.
110
,
4044
(
1988
).
14.
W. D.
Wagner
and
K.
Nakamoto
,
J. Am. Chem. Soc.
111
,
1590
(
1989
).
15.
16.
J. M.
Smith
and
D.
Subedi
,
Dalton Trans.
41
,
1423
(
2012
).
17.
T. H.
Moss
,
A.
Ehrenberg
, and
A. J.
Bearden
,
Biochemistry
8
,
4159
(
1969
).
18.
C. E.
Schulz
,
R.
Rutter
,
J. T.
Sage
,
P. G.
Debrunner
, and
L. P.
Hager
,
Biochemistry
23
,
4743
(
1984
).
19.
M.
Costas
,
K.
Chen
, and
L.
Que
, Jr.
,
Coord. Chem. Rev.
200–202
,
517
(
2000
).
20.
M.
Costas
,
M. P.
Mehn
,
M. P.
Jensen
, and
L.
Que
, Jr.
,
Chem. Rev.
104
,
939
(
2004
).
21.
C. A.
Grapperhaus
,
B.
Mienert
,
E.
Bill
,
T.
Weyhermüller
, and
K.
Wieghardt
,
Inorg. Chem.
39
,
5306
(
2000
).
22.
N.
Aliaga-Alcalde
,
S.
DeBeer George
,
B.
Mienert
,
E.
Bill
,
K.
Wieghardt
, and
F.
Neese
,
Angew. Chem., Int. Ed.
44
,
2908
(
2005
).
23.
J. F.
Berry
,
E.
Bill
,
E.
Bothe
,
T.
Weyhermüller
, and
K.
Wieghardt
,
J. Am. Chem. Soc.
127
,
11550
(
2005
).
24.
J. F.
Berry
,
E.
Bill
,
E.
Bothe
,
S. D.
George
,
B.
Mienert
,
F.
Neese
, and
K.
Wieghardt
,
Science
312
,
1937
(
2006
).
25.
K.
Meyer
,
E.
Bill
,
B.
Mienert
,
T.
Weyhermüller
, and
K.
Wieghardt
,
J. Am. Chem. Soc.
121
,
4859
(
1999
).
26.
J.
Torres-Alacan
,
U.
Das
,
A. C.
Filippou
, and
P.
Vöhringer
,
Angew. Chem., Int. Ed.
52
,
12833
(
2013
).
27.
J.
Torres-Alacan
and
P.
Vöhringer
,
Int. Rev. Phys. Chem.
33
,
521
(
2014
).
28.
H.
Vennekate
,
D.
Schwarzer
,
J.
Torres-Alacan
, and
P.
Vöhringer
,
J. Am. Chem. Soc.
136
,
10095
(
2014
).
29.
J.
Torres-Alacan
,
J.
Lindner
, and
P.
Vöhringer
,
ChemPhysChem
16
,
2289
(
2015
).
30.
J.
Torres-Alacan
and
P.
Vöhringer
,
Chem. - Eur. J.
23
,
6746
(
2017
).
31.
H. C.
Chang
,
B.
Mondal
,
H. Y.
Fang
,
F.
Neese
,
E.
Bill
, and
S. F.
Ye
,
J. Am. Chem. Soc.
141
,
2421
(
2019
).
32.
S.
Flesch
and
P.
Vöhringer
,
Chem. - Eur. J.
29
,
e202301270
(
2023
).
33.
S.
Flesch
,
L. I.
Domenianni
, and
P.
Vöhringer
,
Phys. Chem. Chem. Phys.
22
,
25618
(
2020
).
34.
P. A.
Cornelius
,
A. W.
Steele
,
D. A.
Chernoff
, and
R. M.
Hochstrasser
,
Chem. Phys. Lett.
82
,
9
(
1981
).
35.
M. H.
Ha-Thi
,
N.
Shafizadeh
,
L.
Poisson
, and
B.
Soep
,
Phys. Chem. Chem. Phys.
12
,
14985
(
2010
).
36.
A. S.
Rury
,
L. E.
Goodrich
,
M. G. I.
Galinato
,
N.
Lehnert
, and
R. J.
Sension
,
J. Phys. Chem. A
116
,
8321
(
2012
).
37.
A. S.
Rury
and
R. J.
Sension
,
Chem. Phys.
422
,
220
(
2013
).
38.
A.
Marcelli
,
I. J.
Badovinac
,
N.
Orlic
,
P. R.
Salvi
, and
C.
Gellini
,
Photochem. Photobiol. Sci.
12
,
348
(
2013
).
39.
A. S.
Rury
,
T. E.
Wiley
, and
R. J.
Sension
,
Acc. Chem. Res.
48
,
860
(
2015
).
40.
C.
Govind
and
V.
Karunakaran
,
J. Phys. Chem. B
121
,
3111
(
2017
).
41.
E. S.
Ryland
,
M. F.
Lin
,
M. A.
Verkamp
,
K. L.
Zhang
,
K.
Benke
,
M.
Carlson
, and
J.
Vura-Weis
,
J. Am. Chem. Soc.
140
,
4691
(
2018
).
42.
K. M.
Adams
,
P. G.
Rasmussen
,
W. R.
Scheidt
, and
K.
Hatano
,
Inorg. Chem.
18
,
1892
(
1979
).
43.
S.
Straub
,
P.
Brünker
,
J.
Lindner
, and
P.
Vöhringer
,
Phys. Chem. Chem. Phys.
20
,
21390
(
2018
).
44.
S.
Flesch
and
P.
Vöhringer
,
Angew. Chem., Int. Ed.
61
,
e202202933
(
2022
).
45.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Rev. C.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
46.
J. D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
47.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
48.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
49.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
50.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
51.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
52.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2003
).
53.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
54.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
55.
T.
Lu
and
F. W.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
56.
57.
R. L.
Martin
,
J. Chem. Phys.
118
,
4775
(
2003
).
58.
F.
Paulat
and
N.
Lehnert
,
Inorg. Chem.
47
,
4963
(
2008
).
59.
S.
Straub
,
L. I.
Domenianni
,
J.
Lindner
, and
P.
Vöhringer
,
J. Phys. Chem. B
123
,
7893
(
2019
).
60.
L. I.
Domenianni
,
M.
Bauer
,
T.
Schmidt-Räntsch
,
J.
Lindner
,
S.
Schneider
, and
P.
Vöhringer
,
Angew. Chem., Int. Ed.
62
,
e202309618
(
2023
).
61.
J.
Torres-Alacan
,
O.
Krahe
,
A. C.
Filippou
,
F.
Neese
,
D.
Schwarzer
, and
P.
Vöhringer
,
Chem. - Eur. J.
18
,
3043
(
2012
).
62.
B.
Wezisla
,
J.
Lindner
,
U.
Das
,
A. C.
Filippou
, and
P.
Vöhringer
,
Angew. Chem., Int. Ed.
56
,
6901
(
2017
).
63.
P.
Sulzer
and
K.
Wieland
,
Helv. Phys. Acta
25
,
653
(
1952
).
64.
C.
Weinert
,
B.
Wezisla
,
J.
Lindner
, and
P.
Vöhringer
,
Phys. Chem. Chem. Phys.
17
,
13659
(
2015
).
65.
J. S.
Beckwith
,
C. A.
Rumble
, and
E.
Vauthey
,
Int. Rev. Phys. Chem.
39
,
135
(
2020
).
66.
Y.
Nishimura
,
A. Y.
Hirakawa
, and
M.
Tsuboi
,
J. Mol. Spectrosc.
68
,
335
(
1977
).
67.
S. Y.
Kim
and
T.
Joo
,
J. Phys. Chem. Lett.
6
,
2993
(
2015
).

Supplementary Material

You do not currently have access to this content.