Superfluid helium nanodroplets are unique nanomatrices for the isolation and study of transient molecular species, such as radicals, carbenes, and ions. In this work, isomers of C3H4+ were produced upon electron ionization of propyne and allene molecules and interrogated via infrared spectroscopy inside He nanodroplet matrices. It was found that the spectrum of C3H4+ has at least three distinct groups of bands. The relative intensities of the bands depend on the precursor employed and its pickup pressure, which indicates the presence of at least three different isomers. Two isomers were identified as allene and propyne radical cations. The third isomer, which has several new bands in the range of 3100–3200 cm−1, may be the elusive vinylmethylene H2C=CH–CH+ radical cation. The observed bands for the allene and propyne cations are in good agreement with the results of density functional theory calculations. However, there is only moderate agreement between the new bands and the theoretically calculated vinylmethylene spectrum, which indicates more work is necessary to unambiguously assign it.

1.
R. I.
Kaiser
,
D. S. N.
Parker
, and
A. M.
Mebel
, “
Reaction dynamics in astrochemistry: Low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium
,”
Annu. Rev. Phys. Chem.
66
,
43
67
(
2015
).
2.
A.
Coustenis
,
A.
Salama
,
B.
Schulz
,
S.
Ott
,
E.
Lellouch
,
T. h.
Encrenaz
,
D.
Gautier
, and
H.
Feuchtgruber
, “
Titan’s atmosphere from ISO mid-infrared spectroscopy
,”
Icarus
161
,
383
403
(
2003
).
3.
N.
Hansen
,
J. A.
Miller
,
P. R.
Westmoreland
,
T.
Kasper
,
K.
Kohse-Höinghaus
,
J.
Wang
, and
T. A.
Cool
, “
Isomer-specific combustion chemistry in allene and propyne flames
,”
Combust. Flame
156
,
2153
2164
(
2009
).
4.
G.
Frenking
and
H.
Schwarz
, “
Ab initio molecular orbital calculations on the interconversion of allene and propyne cation radicals and the mechanism for hydrogen loss from C3H4+
,”
Int. J. Mass Spectrom. Ion Phys.
52
,
131
138
(
1983
).
5.
W.
van der Hart
, “
Ab initio molecular orbital calculations on 1,2-hydrogen shifts in the ethene, allene and propyne radical cations
,”
Int. J. Mass Spectrom. Ion Processes
151
,
27
34
(
1995
).
6.
A. M.
Mebel
and
A. D.
Bandrauk
, “
Theoretical study of unimolecular decomposition of allene cations
,”
J. Chem. Phys.
129
,
224311
(
2008
).
7.
J. J.
Myher
and
A. G.
Harrison
, “
Ion-molecule reactions in propyne and allene
,”
J. Phys. Chem.
72
,
1905
1913
(
1968
).
8.
Z. Z.
Yang
,
L. S.
Wang
,
Y. T.
Lee
,
D. A.
Shirley
,
S. Y.
Huang
, and
W. A.
Lester
, Jr.
, “
Molecular beam photoelectron spectroscopy of allene
,”
Chem. Phys. Lett.
171
,
9
13
(
1990
).
9.
D. M. P.
Holland
and
D. A.
Shaw
, “
A study of the valence-shell photoabsorption, photodissociation and photoionisation cross-sections of allene
,”
Chem. Phys.
243
,
333
339
(
1999
).
10.
C.
Baker
and
D. W.
Turner
, “
High resolution molecular photoelectron spectroscopy. III. Acetylenes and aza-acetylenes
,”
Proc. R. Soc. A
308
,
19
37
(
1968
).
11.
G. H.
Ho
,
M. S.
Lin
,
Y. L.
Wang
, and
T. W.
Chang
, “
Photoabsorption and photoionization of propyne
,”
J. Chem. Phys.
109
,
5868
5879
(
1998
).
12.
A. M.
Schulenburg
and
F.
Merkt
, “
Rotationally resolved photoelectron spectroscopic study of the Jahn–Teller effect in allene
,”
J. Chem. Phys.
130
,
034308
(
2009
).
13.
X.
Xing
,
M.-K.
Bahng
,
B.
Reed
,
C. S.
Lam
,
K.-C.
Lau
, and
C. Y.
Ng
, “
Rovibrationally selected and resolved pulsed field ionization-photoelectron study of propyne: Ionization energy and spin–orbit interaction in propyne cation
,”
J. Chem. Phys.
128
,
094311
(
2008
).
14.
A. C.
Parr
,
A. J.
Jason
,
R.
Stockbauer
, and
K. E.
McCulloh
, “
Photoionization and threshold photoelectron–photoion coincidence study of propyne from onset to 20 eV
,”
Int. J. Mass Spectrom. Ion Phys.
30
,
319
330
(
1979
).
15.
A. C.
Parr
,
A. J.
Jason
, and
R.
Stockbauer
, “
Photoionization and threshold photoelectron–photoion coincidence study of allene from onset to 20 eV
,”
Int. J. Mass Spectrom. Ion Phys.
26
,
23
38
(
1978
).
16.
D.
Forney
,
M. E.
Jacox
,
C. L.
Lugez
, and
W. E.
Thompson
, “
Matrix isolation study of the interaction of excited neon atoms with allene and propyne: Infrared spectra of H2CCCH2+ and H2CCCH
,”
J. Chem. Phys.
115
,
8418
8430
(
2001
).
17.
M.-C.
Liu
,
S.-C.
Chen
,
C.-H.
Chin
,
T.-P.
Huang
,
H.-F.
Chen
, and
Y.-J.
Wu
, “
Photoisomerization and infrared spectra of allene and propyne cations in solid argon
,”
J. Phys. Chem. Lett.
6
,
3185
3189
(
2015
).
18.
J. A.
Davies
,
N. A.
Besley
,
S.
Yang
, and
A. M.
Ellis
, “
Probing elusive cations: Infrared spectroscopy of protonated acetic acid
,”
J. Phys. Chem. Lett.
10
,
2108
2112
(
2019
).
19.
S.
Erukala
,
A. J.
Feinberg
,
A.
Singh
, and
A. F.
Vilesov
, “
Infrared spectroscopy of carbocations upon electron ionization of ethylene in helium nanodroplets
,”
J. Chem. Phys.
155
,
084306
(
2021
).
20.
A.
Iguchi
,
A.
Singh
,
S.
Bergmeister
,
A. A.
Azhagesan
,
K.
Mizuse
,
A.
Fujii
,
H.
Tanuma
,
T.
Azuma
,
P.
Scheier
,
S.
Kuma
, and
A. F.
Vilesov
, “
Isolation and infrared spectroscopic characterization of hemibonded water dimer cation in superfluid helium nanodroplets
,”
J. Phys. Chem. Lett.
14
,
8199
8204
(
2023
).
21.
A. J.
Feinberg
,
S.
Erukala
,
C. J.
Moon
,
A.
Singh
,
M. Y.
Choi
, and
A. F.
Vilesov
, “
Isolation and spectroscopy of C2H+ ions in helium droplets
,”
Chem. Phys. Lett.
833
,
140909
(
2023
).
22.
D.
Verma
,
R. M. P.
Tanyag
,
S. M. O.
O’Connell
, and
A. F.
Vilesov
, “
Infrared spectroscopy in superfluid helium droplets
,”
Adv. Phys.: X
4
,
1553569
(
2018
).
23.
M. I.
Taccone
,
D. A.
Thomas
,
K.
Ober
,
S.
Gewinner
,
W.
Schöllkopf
,
G.
Meijer
, and
G.
von Helden
, “
Infrared action spectroscopy of the deprotonated formic acid trimer, trapped in helium nanodroplets
,”
Phys. Chem. Chem. Phys.
25
,
10907
10916
(
2023
).
24.
M.
Kuhn
,
M.
Renzler
,
J.
Postler
,
S.
Ralser
,
S.
Spieler
,
M.
Simpson
,
H.
Linnartz
,
A. G. G. M.
Tielens
,
J.
Cami
,
A.
Mauracher
,
Y.
Wang
,
M.
Alcami
,
F.
Martin
,
M. K.
Beyer
,
R.
Wester
,
A.
Lindinger
, and
P.
Scheier
, “
Atomically resolved phase transition of fullerene cations solvated in helium droplets
,”
Nat. Commun.
7
,
13550
(
2016
).
25.
J. P.
Toennies
and
A. F.
Vilesov
, “
Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes
,”
Angew. Chem., Int. Ed.
43
,
2622
2648
(
2004
).
26.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian
,
Gaussian, Inc.
,
Wallingford CT, USA
,
2016
.
27.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
28.
A. D.
Becke
, “
Density‐functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
29.
A.
Singh
,
S.
Bergmeister
,
A. A.
Azhagesan
,
P.
Scheier
, and
A. F.
Vilesov
, “
Infrared spectroscopy of cations in helium nanodroplets
,”
Rev. Sci. Instrum.
94
,
093002
(
2023
).
30.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
, “
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
,”
Phys. Rev. B
54
,
16533
(
1996
).
31.
R. D.
Johnson
III
, NIST Computational Chemistry Comparison and Benchmark Database,
NIST Standard Reference Database Number 101
, edited by
R. D.
Johnson III
National Institute of Standards and Technology, Gaithersburg, MD
,
2020
). available at https://dx.doi.org/10.18434/T47C7Z.
32.
R.
Stockbauer
,
K. E.
McCulloh
, and
A. C.
Parr
, “
The ionization potential of allene
,”
Int. J. Mass Spectrom. Ion Phys.
31
,
187
189
(
1979
).
33.
K.
Watanabe
and
T.
Namioka
, “
Ionization potential of propyne
,”
J. Chem. Phys.
24
,
915
(
1956
).
34.
V. G.
Anicich
, “
An index of the literature for biomolecular gas phase cation molecule reaction kinetics
,” Report number JPL-Pub-03-19 (
2003
), https://ntrs.nasa.gov/citations/20060029368.
35.
V. G.
Anicich
, “
Evaluated bimolecular ion‐molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds
,”
J. Phys. Chem. Ref. Data
22
,
1469
1569
(
1993
).
36.
W. E.
Wallace
, Mass Spectra in NIST Chemistry WebBook,
NIST Standard Reference Database Number 69
, edited by
P. J.
Linstorm
and
W. G.
Mallard
(
National Institute of Standards and Technology
, Gaithersburg, MD,
2023
), https://webbook.nist.gov/chemistry/.
37.
S.
Erukala
,
A. J.
Feinberg
,
C. J.
Moon
,
M. Y.
Choi
, and
A. F.
Vilesov
, “
Infrared spectroscopy of ions and ionic clusters upon ionization of ethane in helium droplets
,”
J. Chem. Phys.
156
,
204306
(
2022
).
38.
J.
Gspann
and
H.
Vollmar
, “
Metastable excitations of large clusters of 3He, 4He, or Ne atoms
,”
J. Chem. Phys.
73
,
1657
1664
(
1980
).
39.
A.
Mauracher
,
O.
Echt
,
A. M.
Ellis
,
S.
Yang
,
D. K.
Bohme
,
J.
Postler
,
A.
Kaiser
,
S.
Denifl
, and
P.
Scheier
, “
Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K
,”
Phys. Rep.
751
,
1
90
(
2018
).
40.
S.
Bruken
,
F.
Lipparini
,
A.
Stoffels
,
P.
Jusko
,
B.
Redlich
,
J.
Gauss
, and
S.
Schlemmer
, “
Gas-phase vibrational spectroscopy of the hydrocarbon cations l-C3H+, HC3H+, and c-C3H2+: Structures, isomers, and the influence of Ne-tagging
,”
J. Phys. Chem. A
123
,
8053
8082
(
2019
).
You do not currently have access to this content.