Density Functional Theory (DFT) has become a cornerstone in the modeling of metals. However, accurately simulating metals, particularly under extreme conditions, presents two significant challenges. First, simulating complex metallic systems at low electron temperatures is difficult due to their highly delocalized density matrix. Second, modeling metallic warm-dense materials at very high electron temperatures is challenging because it requires the computation of a large number of partially occupied orbitals. This study demonstrates that both challenges can be effectively addressed using the latest advances in linear-scaling stochastic DFT methodologies. Despite the inherent introduction of noise into all computed properties by stochastic DFT, this research evaluates the efficacy of various noise reduction techniques under different thermal conditions. Our observations indicate that the effectiveness of noise reduction strategies varies significantly with the electron temperature. Furthermore, we provide evidence that the computational cost of stochastic DFT methods scales linearly with system size for metal systems, regardless of the electron temperature regime.

1.
A.
Bhaduri
,
Mechanical Properties and Working of Metals and Alloys
, in
Springer Series in Materials Science
(
Springer Nature Singapore
,
2018
).
2.
M. E.
McHenry
and
D. E.
Laughlin
, “
19—Magnetic properties of metals and alloys
,” in
Physical Metallurgy
, 5th ed., edited by
D. E.
Laughlin
and
K.
Hono
(
Elsevier
,
Oxford
,
2014
), pp.
1881
2008
3.
H.
Ehrenreich
and
L.
Schwartz
, “
The electronic structure of alloy
,”
Solid State Phys.
31
,
149
286
(
1976
).
4.
J.
Aarons
,
M.
Sarwar
,
D.
Thompsett
, and
C.-K.
Skylaris
, “
Perspective: Methods for large-scale density functional calculations on metallic systems
,”
J. Chem. Phys.
145
,
220901
(
2016
).
5.
C. J.
Herring
and
M. M.
Montemore
, “
Recent advances in real-time time-dependent density functional theory simulations of plasmonic nanostructures and plasmonic photocatalysis
,”
ACS Nanosci. Au
3
,
269
279
(
2023
).
6.
J. W. D.
Connolly
and
A. R.
Williams
, “
Density-functional theory applied to phase transformations in transition-metal alloys
,”
Phys. Rev. B
27
,
5169
5172
(
1983
).
7.
J.
Greeley
,
J. K.
Nørskov
, and
M.
Mavrikakis
, “
Electronic structure and catalysis on metal surfaces
,”
Annu. Rev. Phys. Chem.
53
,
319
348
(
2002
).
8.
Z.
Zhang
,
C.
Zhang
,
H.
Zheng
, and
H.
Xu
, “
Plasmon-driven catalysis on molecules and nanomaterials
,”
Acc. Chem. Res.
52
,
2506
2515
(
2019
).
9.
X.
Gao
,
R.
Chen
,
T.
Liu
,
H.
Fang
,
G.
Qin
,
Y.
Su
, and
J.
Guo
, “
High-entropy alloys: A review of mechanical properties and deformation mechanisms at cryogenic temperatures
,”
J. Mater. Sci.
57
,
6573
6606
(
2022
).
10.
U.
Banin
,
Y.
Ben-Shahar
, and
K.
Vinokurov
, “
Hybrid semiconductor–metal nanoparticles: From architecture to function
,”
Chem. Mater.
26
,
97
110
(
2014
).
11.
A. H.
Hakimioun
,
B. D.
Vandegehuchte
,
D.
Curulla-Ferre
,
K.
Kaźmierczak
,
P. N.
Plessow
, and
F.
Studt
, “
Metal–support interactions in heterogeneous catalysis: DFT calculations on the interaction of copper nanoparticles with magnesium oxide
,”
ACS Omega
8
,
10591
10599
(
2023
).
12.
D.
Stradi
,
U.
Martinez
,
A.
Blom
,
M.
Brandbyge
, and
K.
Stokbro
, “
General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green’s function
,”
Phys. Rev. B
93
,
155302
(
2016
).
13.
J.
Aarons
,
L.
Jones
,
A.
Varambhia
,
K. E.
MacArthur
,
D.
Ozkaya
,
M.
Sarwar
,
C.-K.
Skylaris
, and
P. D.
Nellist
, “
Predicting the oxygen-binding properties of platinum nanoparticle ensembles by combining high-precision electron microscopy and density functional theory
,”
Nano Lett.
17
,
4003
4012
(
2017
).
14.
M.
Koenig
,
A.
Benuzzi-Mounaix
,
A.
Ravasio
,
T.
Vinci
,
N.
Ozaki
,
S.
Lepape
,
D.
Batani
,
G.
Huser
,
T.
Hall
,
D.
Hicks
et al, “
Progress in the study of warm dense matter
,”
Plasma Phys. Control. Fusion
47
,
B441
(
2005
).
15.
J. C.
Smith
,
F.
Sagredo
, and
K.
Burke
, “
Warming up density functional theory
,” in
Frontiers of Quantum Chemistry
, edited by
M. J.
Wójcik
,
H.
Nakatsuji
,
B.
Kirtman
and
Y.
Ozaki
(
Springer Singapore
,
Singapore
,
2018
), pp.
249
271
.
16.
A.
Blanchet
,
M.
Torrent
, and
J.
Clerouin
, “
Requirements for very high temperature Kohn–Sham DFT simulations and how to bypass them
,”
Phys. Plasmas
27
,
122706
(
2020
).
17.
T.
Zhu
,
W.
Pan
, and
W.
Yang
, “
Structure of solid-state systems from embedded-cluster calculations: A divide-and-conquer approach
,”
Phys. Rev. B
53
,
12713
12724
(
1996
).
18.
J. C.
Prentice
,
J.
Aarons
,
J. C.
Womack
,
A. E.
Allen
,
L.
Andrinopoulos
,
L.
Anton
,
R. A.
Bell
,
A.
Bhandari
,
G. A.
Bramley
,
R. J.
Charlton
et al, “
The onetep linear-scaling density functional theory program
,”
J. Chem. Phys.
152
,
174111
(
2020
).
19.
W.
Kohn
, “
Density functional and density matrix method scaling linearly with the number of atoms
,”
Phys. Rev. Lett.
76
,
3168
(
1996
).
20.
T. A.
Wesolowski
and
Y. A.
Wang
,
Recent Progress in Orbital-free Density Functional Theory
(
World Scientific
,
2013
).
21.
E.
Artacho
,
D.
Sánchez-Portal
,
P.
Ordejón
,
A.
Garcia
, and
J. M.
Soler
, “
Linear-scaling ab-initio calculations for large and complex systems
,”
Phys. Status Solidi B
215
,
809
817
(
1999
).
22.
E.
Hernández
,
M.
Gillan
, and
C.
Goringe
, “
Linear-scaling density-functional-theory technique: The density-matrix approach
,”
Phys. Rev. B
53
,
7147
(
1996
).
23.
T. M.
Henderson
, “
Embedding wave function theory in density functional theory
,”
J. Chem. Phys.
125
,
014105
(
2006
).
24.
P.
Huang
and
E. A.
Carter
, “
Advances in correlated electronic structure methods for solids, surfaces, and nanostructures
,”
Annu. Rev. Phys. Chem.
59
,
261
290
(
2008
).
25.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys. Condens. Matter
14
,
2745
(
2002
).
26.
A.
Krishtal
,
D.
Sinha
,
A.
Genova
, and
M.
Pavanello
, “
Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics and many-body interactions
,”
J. Phys. Condens. Matter
27
,
183202
(
2015
).
27.
W.
Yang
, “
Direct calculation of electron density in density-functional theory
,”
Phys. Rev. Lett.
66
,
1438
1441
(
1991
).
28.
C. R.
Jacob
and
J.
Neugebauer
, “
Subsystem density-functional theory
,”
WIREs Comput. Mol. Sci.
4
,
325
362
(
2014
).
29.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
, “
Frozen-density embedding strategy for multilevel simulations of electronic structure
,”
Chem. Rev.
115
,
5891
5928
(
2015
).
30.
A.
Schindlmayr
, “
Decay properties of the one-particle Green function in real space and imaginary time
,”
Phys. Rev. B
62
,
12573
12576
(
2000
).
31.
R.
Baer
and
M.
Head-Gordon
, “
Sparsity of the density matrix in Kohn–Sham density functional theory and an assessment of linear system-size scaling methods
,”
Phys. Rev. Lett.
79
,
3962
(
1997
).
32.
M.
Challacombe
, “
A simplified density matrix minimization for linear scaling self-consistent field theory
,”
J. Chem. Phys.
110
,
2332
2342
(
1999
).
33.
M.
Benzi
,
P.
Boito
, and
N.
Razouk
, “
Decay properties of spectral projectors with applications to electronic structure
,”
SIAM J. Matrix Anal. Appl.
33
,
1299
1322
(
2012
).
34.
S.
Ismail-Beigi
and
T.
Arias
, “
Locality of the density matrix in metals, semiconductors, and insulators
,”
Phys. Rev. Lett.
82
,
2127
(
1999
).
35.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.-H.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M.
Klein
, and
J.
Perdew
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
836
(
2016
).
36.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
, “
Introducing onetep: Linear-scaling density functional simulations on parallel computers
,”
J. Chem. Phys.
122
,
084119
(
2005
).
37.
A. J.
White
and
L. A.
Collins
, “
Fast and universal Kohn–Sham density functional theory algorithm for warm dense matter to hot dense plasma
,”
Phys. Rev. Lett.
125
,
055002
(
2020
).
38.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Self-averaging stochastic Kohn–Sham density-functional theory
,”
Phys. Rev. Lett.
111
,
106402
(
2013
).
39.
Y.
Cytter
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Stochastic density functional theory at finite temperatures
,”
Phys. Rev. B
97
,
115207
(
2018
).
40.
R. E.
Hadad
,
A.
Roy
,
E.
Rabani
,
R.
Redmer
, and
R.
Baer
, “
Stochastic density functional theory combined with Langevin dynamics for warm dense matter
,” arXiv:240111336 (
2024
).
41.
Q.
Liu
and
M.
Chen
, “
Plane-wave-based stochastic-deterministic density functional theory for extended systems
,”
Phys. Rev. B
106
,
125132
(
2022
).
42.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Energy window stochastic density functional theory
,”
J. Chem. Phys.
151
,
114116
(
2019
).
43.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
,”
J. Chem. Phys.
150
,
034106
(
2019
).
44.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Stochastic density functional theory: Real- and energy-space fragmentation for noise reduction
,”
J. Chem. Phys.
154
,
204108
(
2021
).
45.
R.
Kosloff
, “
Time-dependent quantum-mechanical methods for molecular dynamics
,”
J. Phys. Chem.
92
,
2087
2100
(
1988
).
46.
R.
Kosloff
, “
Propagation methods for quantum molecular dynamics
,”
Annu. Rev. Phys. Chem.
45
,
145
178
(
1994
).
47.
M. E.
Tuckerman
,
D.
Yarne
,
S. O.
Samuelson
,
A. L.
Hughes
, and
G. J.
Martyna
, “
Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers
,”
Comput. Phys. Commun.
128
,
333
376
(
2000
).
48.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
49.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the colle-salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
50.
Z. A.
Moldabekov
,
M.
Lokamani
,
J.
Vorberger
,
A.
Cangi
, and
T.
Dornheim
, “
Non-empirical mixing coefficient for hybrid XC functionals from analysis of the XC kernel
,”
J. Phys. Chem. Lett.
14
,
1326
1333
(
2023
).
51.
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
The uniform electron gas at warm dense matter conditions
,”
Phys. Rep.
744
,
1
86
(
2018
).
52.
M.
Bonitz
,
T.
Dornheim
,
Z. A.
Moldabekov
,
S.
Zhang
,
P.
Hamann
,
H.
Kählert
,
A.
Filinov
,
K.
Ramakrishna
, and
J.
Vorberger
, “
Ab initio simulation of warm dense matter
,”
Phys. Plasmas
27
,
042710
(
2020
).
53.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
(
1991
).
54.
L.
Kleinman
and
D.
Bylander
, “
Efficacious form for model pseudopotentials
,”
Phys. Rev. Lett.
48
,
1425
(
1982
).
55.
M. D.
Fabian
,
B.
Shpiro
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Stochastic density functional theory
,”
WIREs Comput. Mol. Sci.
9
,
e1412
(
2019
).
56.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Efficient Langevin dynamics for ‘noisy’ forces
,”
J. Chem. Phys.
152
,
161103
(
2020
).
57.
M.
Chen
,
R.
Baer
, and
E.
Rabani
, “
Structure optimization with stochastic density functional theory
,”
J. Chem. Phys.
158
,
024111
(
2023
).
58.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory
,”
J. Chem. Phys.
146
,
224111
(
2017
).
59.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys. Condens. Matter
21
,
395502
(
2009
).
60.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A. J.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum espresso
,”
J. Phys. Condens. Matter
29
,
465901
(
2017
).
You do not currently have access to this content.