We present a general and practical theoretical framework to investigate how energy is dissipated in open quantum system dynamics. This is performed by quantifying the contributions of individual bath components to the overall dissipation of the system. The framework is based on the Nakajima–Zwanzig projection operator technique, which allows us to express the rate of energy dissipation into a specific bath degree of freedom by using traces of operator products. The approach captures system-bath interactions to all orders, but is based on second-order perturbation theory on the off-diagonal subsystem's couplings and a Markovian description of the bath. The usefulness of our theory is demonstrated by applying it to various models of open quantum systems involving harmonic oscillators or spin baths and connecting the outcomes to existing results such as our previously reported formula derived for locally coupled harmonic baths [Kim and Franco, J. Chem. Phys. 154, 084109 (2021)]. We also prove that the dissipation calculated by our theory rigorously satisfies thermodynamic principles such as energy conservation and detailed balance. Overall, the strategy can be used to develop the theory and simulation of dissipation pathways to interpret and engineer the dynamics of open quantum systems.

1.
U.
Weiss
, in
Quantum Dissipative Systems
,
Series in Modern Condensed Matter Physics
, 4th ed. (
World Scientific
,
2012
).
2.
M.
Schlosshauser
,
Decoherence and the Quantum-to-Classical Transitions
,
The Frontiers Collection
(
Springer-Verlag
,
Berlin
,
2007
).
3.
F.
Fassioli
,
R.
Dinshaw
,
P. C.
Arpin
, and
G. D.
Scholes
, “
Photosynthetic light harvesting: Excitons and coherence
,”
J. R. Soc., Interface
11
,
20130901
(
2014
).
4.
L.
Wang
,
R.
Long
, and
O. V.
Prezhdo
, “
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces
,”
Annu. Rev. Phys. Chem.
66
,
549
579
(
2015
).
5.
N. J.
Hestand
and
F. C.
Spano
, “
Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer
,”
Chem. Rev.
118
,
7069
7163
(
2018
).
6.
L.
Mejía
,
U.
Kleinekathöfer
, and
I.
Franco
, “
Coherent and incoherent contributions to molecular electron transport
,”
J. Chem. Phys.
156
,
094302
(
2022
).
7.
D.
Kienzler
,
H.-Y.
Lo
,
B.
Keitch
,
L.
de Clercq
,
F.
Leupold
,
F.
Lindenfelser
,
M.
Marinelli
,
V.
Negnevitsky
, and
J. P.
Home
, “
Quantum harmonic oscillator state synthesis by reservoir engineering
,”
Science
347
,
53
56
(
2014
).
8.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
9.
K.
Ng
,
M.
Webster
,
W. P.
Carbery
,
N.
Visaveliya
,
P.
Gaikwad
,
S. J.
Jang
,
I.
Kretzschmar
, and
D. M.
Eisele
, “
Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding
,”
Nat. Chem.
12
,
1157
1164
(
2020
).
10.
S. M.
Hart
,
W. J.
Chen
,
J. L.
Banal
,
W. P.
Bricker
,
A.
Dodin
,
L.
Markova
,
Y.
Vyborna
,
A. P.
Willard
,
R.
Häner
,
M.
Bathe
, and
G. S.
Schlau-Cohen
, “
Engineering couplings for exciton transport using synthetic DNA scaffolds
,”
Chem
7
,
752
773
(
2021
).
11.
M.
Esposito
and
S.
Mukamel
, “
Fluctuation theorems for quantum master equations
,”
Phys. Rev. E
73
,
046129
(
2006
).
12.
M.
Esposito
and
C.
Van den Broeck
, “
Three faces of the second law. I. Master equation formulation
,”
Phys. Rev. E
82
,
011143
(
2010
).
13.
M.
Carrega
,
P.
Solinas
,
M.
Sassetti
, and
U.
Weiss
, “
Energy exchange in driven open quantum systems at strong coupling
,”
Phys. Rev. Lett.
116
,
240403
(
2016
).
14.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines
,”
J. Chem. Phys.
145
,
224105
(
2016
).
15.
R.
Kosloff
, “
Quantum thermodynamics and open-systems modeling
,”
J. Chem. Phys.
150
,
204105
(
2019
).
16.
E.
Geva
and
R.
Kosloff
, “
The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier
,”
J. Chem. Phys.
104
,
7681
7699
(
1996
).
17.
E.
Mascarenhas
,
M. F.
Santos
,
A.
Auffèves
, and
D.
Gerace
, “
Quantum rectifier in a one-dimensional photonic channel
,”
Phys. Rev. A
93
,
043821
(
2016
).
18.
H.-D.
Meyer
,
U.
Manthe
, and
L.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
19.
G. A.
Worth
, “
Accurate wave packet propagation for large molecular systems: The multiconfiguration time-dependent Hartree (MCTDH) method with selected configurations
,”
J. Chem. Phys.
112
,
8322
8329
(
2000
).
20.
H.
Wang
, “
Multilayer multiconfiguration time-dependent Hartree theory
,”
J. Phys. Chem. A
119
,
7951
7965
(
2015
).
21.
M. A.
Cazalilla
and
J. B.
Marston
, “
Time-dependent density-matrix renormalization group: A systematic method for the study of quantum many-body out-of-equilibrium systems
,”
Phys. Rev. Lett.
88
,
256403
(
2002
).
22.
S. R.
White
and
A. E.
Feiguin
, “
Real-time evolution using the density matrix renormalization group
,”
Phys. Rev. Lett.
93
,
076401
(
2004
).
23.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
24.
H.
Umezawa
,
H.
Matsumoto
, and
M.
Tachiki
,
Thermo Field Dynamics and Condensed States
(
North-Holland
,
The Netherlands
,
1982
).
25.
J.
Ren
,
Z.
Shuai
, and
G.
Kin-Lic Chan
, “
Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature
,”
J. Chem. Theory Comput.
14
,
5027
5039
(
2018
).
26.
T.
Jiang
,
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Finite temperature dynamical density matrix renormalization group for spectroscopy in frequency domain
,”
J. Phys. Chem. Lett.
11
,
3761
3768
(
2020
).
27.
E. J.
O’Reilly
and
A.
Olaya-Castro
, “
Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature
,”
Nat. Commun.
5
,
3012
(
2014
).
28.
P.
Nalbach
,
C. A.
Mujica-Martinez
, and
M.
Thorwart
, “
Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex
,”
Phys. Rev. E
91
,
022706
(
2015
).
29.
V. I.
Novoderezhkin
,
E.
Romero
,
J.
Prior
, and
R.
van Grondelle
, “
Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center
,”
Phys. Chem. Chem. Phys.
19
,
5195
5208
(
2017
).
30.
D. I. G.
Bennett
,
P.
Malý
,
C.
Kreisbeck
,
R.
van Grondelle
, and
A.
Aspuru-Guzik
, “
Mechanistic regimes of vibronic transport in a heterodimer and the design principle of incoherent vibronic transport in phycobiliproteins
,”
J. Phys. Chem. Lett.
9
,
2665
2670
(
2018
).
31.
C. W.
Kim
, “
Extracting bath information from open-quantum-system dynamics with the hierarchical equations-of-motion method
,”
Phys. Rev. A
106
,
042223
(
2022
).
32.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
, “
Quantum-classical Liouville dynamics in the mapping basis
,”
J. Chem. Phys.
129
,
084102
(
2008
).
33.
A.
Kelly
,
N.
Brackbill
, and
T. E.
Markland
, “
Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations
,”
J. Chem. Phys.
142
,
094110
(
2015
).
34.
J.
Liu
and
G.
Hanna
, “
Efficient and deterministic propagation of mixed quantum-classical Liouville dynamics
,”
J. Phys. Chem. Lett.
9
,
3928
3933
(
2018
).
35.
J. E.
Runeson
and
J. O.
Richardson
, “
Generalized spin mapping for quantum-classical dynamics
,”
J. Chem. Phys.
152
,
084110
(
2020
).
36.
C. W.
Kim
and
Y. M.
Rhee
, “
Toward monitoring the dissipative vibrational energy flows in open quantum systems by mixed quantum-classical simulations
,”
J. Chem. Phys.
152
,
244109
(
2020
).
37.
K. H.
Cho
and
Y. M.
Rhee
, “
Cooperation between excitation energy transfer and antisynchronously coupled vibrations
,”
J. Phys. Chem. B
125
,
5601
5610
(
2021
).
38.
H. W.
Kim
and
Y. M.
Rhee
, “
Improving long time behavior of Poisson bracket mapping equation: A non-Hamiltonian approach
,”
J. Chem. Phys.
140
,
184106
(
2014
).
39.
C. W.
Kim
and
I.
Franco
, “
Theory of dissipation pathways in open quantum systems
,”
J. Chem. Phys.
154
,
084109
(
2021
).
40.
T.
Förster
, “
10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation
,”
Discuss. Faraday Soc.
27
,
7
17
(
1959
).
41.
H.
Sumi
, “
Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis
,”
J. Phys. Chem. B
103
,
252
260
(
1999
).
42.
X.
Song
and
R. A.
Marcus
, “
Quantum correction for electron transfer rates. Comparison of polarizable versus nonpolarizable descriptions of solvent
,”
J. Chem. Phys.
99
,
7768
7773
(
1993
).
43.
D. G.
Evans
and
R. D.
Coalson
, “
Simulation of electron transfer in polar solvents: Effects of nonequilibrium initial state preparation
,”
J. Chem. Phys.
104
,
3598
3608
(
1996
).
44.
S.
Mukamel
, “
Nonimpact unified theory of four-wave mixing and two-photon processes
,”
Phys. Rev. A
28
,
3480
3492
(
1983
).
45.
J.
Hayes
,
J.
Gillie
,
D.
Tang
, and
G.
Small
, “
Theory for spectral hole burning of the primary electron donor state of photosynthetic reaction centers
,”
Biochim. Biophys. Acta, Bioenerg.
932
,
287
305
(
1988
).
46.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
47.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
48.
E. U.
Condon
, “
Nuclear motions associated with electron transitions in diatomic molecules
,”
Phys. Rev.
32
,
858
872
(
1928
).
49.
Y.
Lai
and
E.
Geva
, “
Electronic absorption spectra from off-diagonal quantum master equations
,”
J. Chem. Phys.
157
,
104115
(
2022
).
50.
A. A.
Golosov
and
D. R.
Reichman
, “
Reference system master equation approaches to condensed phase charge transfer processes. I. General formulation
,”
J. Chem. Phys.
115
,
9848
9861
(
2001
).
51.
S. J.
Jang
,
Dynamics of Molecular Excitons
,
Nanophotonics Series
(
Elsevier
,
2020
).
52.
M.
Yang
and
G. R.
Fleming
, “
Influence of phonons on exciton transfer dynamics: Comparison of the Redfield, Förster, and modified Redfield equations
,”
Chem. Phys.
275
,
355
372
(
2002
).
53.
E.
Mulvihill
and
E.
Geva
, “
A road map to various pathways for calculating the memory kernel of the generalized quantum master equation
,”
J. Phys. Chem. B
125
,
9834
9852
(
2021
).
54.

In this work, “trace” can mean either full or partial trace depending on the context.

55.
A.
Trushechkin
, “
Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer
,”
J. Chem. Phys.
151
,
074101
(
2019
).
56.
L.
Banchi
,
G.
Costagliola
,
A.
Ishizaki
, and
P.
Giorda
, “
An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Förster theory
,”
J. Chem. Phys.
138
,
184107
(
2013
).
57.
L.
Yang
and
S. J.
Jang
, “
Theoretical investigation of non-Förster exciton transfer mechanisms in perylene diimide donor, phenylene bridge, and terrylene diimide acceptor systems
,”
J. Chem. Phys.
153
,
144305
(
2020
).
58.
A. F.
Morrison
and
J. M.
Herbert
, “
Evidence for singlet fission driven by vibronic coherence in crystalline tetracene
,”
J. Phys. Chem. Lett.
8
,
1442
1448
(
2017
).
59.
M.
Nakano
, “
Quantum master equation approach to singlet fission dynamics in pentacene ring-shaped aggregate models
,”
J. Chem. Phys.
150
,
234305
(
2019
).
60.
S.
Jang
,
Y.
Jung
, and
R. J.
Silbey
, “
Nonequilibrium generalization of Förster–Dexter theory for excitation energy transfer
,”
Chem. Phys.
275
,
319
332
(
2002
).
61.
S.-J.
Jang
, “
Multistep quantum master equation theory for response functions in four wave mixing electronic spectroscopy of multichromophoric macromolecules
,”
Bull. Korean Chem. Soc.
33
,
997
1008
(
2012
).
62.
J.
Sung
and
R. J.
Silbey
, “
Four wave mixing spectroscopy for a multilevel system
,”
J. Chem. Phys.
115
,
9266
9287
(
2001
).
63.
R. F.
Fox
, “
Critique of the generalized cumulant expansion method
,”
J. Math. Phys.
17
,
1148
(
1976
).
64.
A. O.
Caldeira
,
A. H.
Castro Neto
, and
T.
Oliveira de Carvalho
, “
Dissipative quantum systems modeled by a two-level-reservoir coupling
,”
Phys. Rev. B
48
,
13974
13976
(
1993
).
65.
P. C.
Marques
and
A. H.
Castro Neto
, “
Master equation for a particle coupled to a two-level reservoir
,”
Phys. Rev. B
52
,
10693
10696
(
1995
).
66.
J.
Shao
and
P.
Hänggi
, “
Decoherent dynamics of a two-level system coupled to a sea of spins
,”
Phys. Rev. Lett.
81
,
5710
5713
(
1998
).
67.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
, “
Multichromophoric Förster resonance energy transfer
,”
Phys. Rev. Lett.
92
,
218301
(
2004
).
68.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling
,”
J. Chem. Phys.
119
,
12063
12076
(
2003
).
69.
Q.
Shi
and
E.
Geva
, “
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
,”
J. Chem. Phys.
120
,
10647
10658
(
2004
).
70.
A.
Kelly
,
A.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
, “
Generalized quantum master equations in and out of equilibrium: When can one win?
,”
J. Chem. Phys.
144
,
184105
(
2016
).
71.
G.
Amati
,
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Quasiclassical approaches to the generalized quantum master equation
,”
J. Chem. Phys.
157
,
234103
(
2022
).
72.
B. B.
Laird
,
J.
Budimir
, and
J. L.
Skinner
, “
Quantum-mechanical derivation of the Bloch equations: Beyond the weak-coupling limit
,”
J. Chem. Phys.
94
,
4391
(
1991
).
73.
D. R.
Reichman
and
R. J.
Silbey
, “
On the relaxation of a two-level system: Beyond the weak-coupling approximation
,”
J. Chem. Phys.
104
,
1506
(
1996
).
74.
G. T.
Landi
and
M.
Paternostro
, “
Irreversible entropy production: From classical to quantum
,”
Rev. Mod. Phys.
93
,
035008
(
2021
).
75.
P.
Strasberg
,
G.
Schaller
,
T. L.
Schmidt
, and
M.
Esposito
, “
Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime
,”
Phys. Rev. B
97
,
205405
(
2018
).
76.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
, “
Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach
,”
J. Phys. Chem. B
108
,
10363
10375
(
2004
).
77.
M.
Rätsep
and
A.
Freiberg
, “
Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing
,”
J. Lumin.
127
,
251
259
(
2007
).
78.
I.
Gustin
,
C. W.
Kim
,
D. W.
McCamant
, and
I.
Franco
, “
Mapping electronic decoherence pathways in molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2309987120
(
2023
).
79.
M. K.
Lee
,
K. B.
Bravaya
, and
D. F.
Coker
, “
First-principles models for biological light-harvesting: Phycobiliprotein complexes from cryptophyte algae
,”
J. Am. Chem. Soc.
139
,
7803
7814
(
2017
).
80.
C. W.
Kim
,
B.
Choi
, and
Y. M.
Rhee
, “
Excited state energy fluctuations in the Fenna–Matthews–Olson complex from molecular dynamics simulations with interpolated chromophore potentials
,”
Phys. Chem. Chem. Phys.
20
,
3310
3319
(
2018
).
81.
C. W.
Kim
and
I.
Franco
, “
General framework for quantifying dissipation pathways in open quantum systems. II. Numerical validation and the role of non-Markovianity
,”
J. Chem. Phys.
160
,
214112-1
214112-15
(
2024
).
You do not currently have access to this content.