The machine learning (ML) method emerges as an efficient and precise surrogate model for high-level electronic structure theory. Its application has been limited to closed chemical systems without considering external potentials from the surrounding environment. To address this limitation and incorporate the influence of external potentials, polarization effects, and long-range interactions between a chemical system and its environment, the first two terms of the Taylor expansion of an electrostatic operator have been used as extra input to the existing ML model to represent the electrostatic environments. However, high-order electrostatic interaction is often essential to account for external potentials from the environment. The existing models based only on invariant features cannot capture significant distribution patterns of the external potentials. Here, we propose a novel ML model that includes high-order terms of the Taylor expansion of an electrostatic operator and uses an equivariant model, which can generate a high-order tensor covariant with rotations as a base model. Therefore, we can use the multipole-expansion equation to derive a useful representation by accounting for polarization and intermolecular interaction. Moreover, to deal with long-range interactions, we follow the same strategy adopted to derive long-range interactions between a target system and its environment media. Our model achieves higher prediction accuracy and transferability among various environment media with these modifications.

1.
J. J.
Gajewski
,
Acc. Chem. Res.
30
(
5
),
219
225
(
1997
).
2.
C. J.
Li
and
L.
Chen
,
Chem. Soc. Rev.
35
(
1
),
68
82
(
2006
).
3.
A. C.
Aragones
,
N. L.
Haworth
,
N.
Darwish
,
S.
Ciampi
,
N. J.
Bloomfield
,
G. G.
Wallace
,
I.
Diez-Perez
, and
M. L.
Coote
,
Nature
531
(
7592
),
88
91
(
2016
).
4.
S.
Shaik
,
D.
Mandal
, and
R.
Ramanan
,
Nat. Chem.
8
,
1091
1098
(
2016
).
5.
I.
Tunon
,
D.
Laage
, and
J. T.
Hynes
,
Arch. Biochem. Biophys.
582
,
42
55
(
2015
).
6.
A.
Warshel
,
P. K.
Sharma
,
M.
Kato
,
Y.
Xiang
,
H. B.
Liu
, and
M. H. M.
Olsson
,
Chem. Rev.
106
(
8
),
3210
3235
(
2006
).
7.
I.
Zoi
and
S.
Schwartz
,
Biophys. J.
114
(
3
),
525A
(
2018
).
8.
S.
Ahmadi
,
L.
Barrios Herrera
,
M.
Chehelamirani
,
J.
Hostaš
,
S.
Jalife
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
118
(
9
),
e25558
(
2018
).
9.
J.
Gao
and
D. G.
Truhlar
,
Annu. Rev. Phys. Chem.
53
,
467
505
(
2002
).
10.
J.
Gao
and
X.
Xia
,
Science
258
(
5082
),
631
635
(
1992
).
11.
H.
Hu
and
W.
Yang
,
Annu. Rev. Phys. Chem.
59
,
573
601
(
2008
).
12.
M.
Karplus
,
Angew. Chem., Int. Ed.
53
(
38
),
9992
10005
(
2014
).
13.
H.
Lin
and
D. G.
Truhlar
,
Theor. Chem. Acc.
117
(
2
),
185
199
(
2007
).
14.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
(
7
),
1198
1229
(
2009
).
15.
U. C.
Singh
and
P. A.
Kollman
,
J. Comput. Chem.
7
(
6
),
718
730
(
1986
).
16.
M. W.
van der Kamp
and
A. J.
Mulholland
,
Biochemistry
52
(
16
),
2708
2728
(
2013
).
17.
A.
Warshel
,
Angew. Chem., Int. Ed.
53
(
38
),
10020
10031
(
2014
).
18.
J.
Gao
,
J. Phys. Chem.
96
(
2
),
537
540
(
1992
).
19.
J.
Heimdal
and
U.
Ryde
,
Phys. Chem. Chem. Phys.
14
(
36
),
12592
12604
(
2012
).
20.
W.
Hu
,
P.
Li
,
J. N.
Wang
,
Y.
Xue
,
Y.
Mo
,
J.
Zheng
,
X.
Pan
,
Y.
Shao
, and
Y.
Mei
,
J. Chem. Theory Comput.
16
(
11
),
6814
6822
(
2020
).
21.
R. P.
Muller
and
A.
Warshel
,
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 1996: 524-538
,
1996
.
22.
P.
Koskinen
and
V.
Mäkinen
,
Comput. Mater. Sci.
47
(
1
),
237
253
(
2009
).
23.
E.
Kocer
,
T. W.
Ko
, and
J.
Behler
,
Annu. Rev. Phys. Chem.
73
(
1
),
163
186
(
2022
).
24.
M.
Kulichenko
,
J. S.
Smith
,
B.
Nebgen
,
Y. W.
Li
,
N.
Fedik
,
A. I.
Boldyrev
,
N.
Lubbers
,
K.
Barros
, and
S.
Tretiak
,
J. Phys. Chem. Lett.
12
(
26
),
6227
6243
(
2021
).
25.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schutt
,
A.
Tkatchenko
, and
K. R.
Muller
,
Chem. Rev.
121
(
16
),
10142
10186
(
2021
).
26.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
(
14
),
146401
(
2007
).
27.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
,
J. Chem. Phys.
152
(
4
),
044107
(
2020
).
28.
K. T.
Schutt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Muller
,
J. Chem. Phys.
148
(
24
),
241722
(
2018
).
29.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
(
4
),
3192
3203
(
2017
).
30.
O. T.
Unke
and
M.
Meuwly
,
J. Chem. Theory Comput.
15
(
6
),
3678
3693
(
2019
).
31.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
,
Chem. Sci.
8
(
10
),
6924
6935
(
2017
).
32.
Z. L.
Glick
,
A.
Koutsoukas
,
D. L.
Cheney
, and
C. D.
Sherrill
,
J. Chem. Phys.
154
(
22
),
224103
(
2021
).
33.
M.
Veit
,
D. M.
Wilkins
,
Y.
Yang
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
,
J. Chem. Phys.
153
(
2
),
024113
(
2020
).
34.
O.
Omodemi
,
S.
Sprouse
,
D.
Herbert
,
M.
Kaledin
, and
A. L.
Kaledin
,
J. Chem. Theory Comput.
18
(
1
),
37
45
(
2022
).
35.
D. M.
Wilkins
,
A.
Grisafi
,
Y.
Yang
,
K. U.
Lao
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
,
Proc. Natl. Acad. Sci. U. S. A.
116
(
9
),
3401
3406
(
2019
).
36.
V.
Zaverkin
,
J.
Netz
,
F.
Zills
,
A.
Kohn
, and
J.
Kastner
,
J. Chem. Theory Comput.
18
(
1
),
1
12
(
2022
).
37.
A.
Hofstetter
,
L.
Boselt
, and
S.
Riniker
,
Phys. Chem. Chem. Phys.
24
(
37
),
22497
22512
(
2022
).
38.
B.
Lier
,
P.
Poliak
,
P.
Marquetand
,
J.
Westermayr
, and
C.
Oostenbrink
,
J. Phys. Chem. Lett.
13
(
17
),
3812
3818
(
2022
).
39.
J.
Zeng
,
T. J.
Giese
,
S.
Ekesan
, and
D. M.
York
,
J. Chem. Theory Comput.
17
(
11
),
6993
7009
(
2021
).
40.
M.
Gastegger
,
K. T.
Schutt
, and
K. R.
Muller
,
Chem. Sci.
12
(
34
),
11473
11483
(
2021
).
41.
X.
Pan
,
J.
Yang
,
R.
Van
,
E.
Epifanovsky
,
J.
Ho
,
J.
Huang
,
J.
Pu
,
Y.
Mei
,
K.
Nam
, and
Y.
Shao
,
J. Chem. Theory Comput.
17
(
9
),
5745
5758
(
2021
).
42.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U. S. A.
102
(
33
),
11635
11638
(
2005
).
43.
I.
Poltavsky
and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
12
(
28
),
6551
6564
(
2021
).
44.
A.
Grisafi
and
M.
Ceriotti
,
J. Chem. Phys.
151
(
20
),
204105
(
2019
).
45.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
,
Nat. Commun.
12
(
1
),
398
(
2021
).
46.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
,
Acc. Chem. Res.
54
(
4
),
808
817
(
2021
).
47.
K.
Schütt
,
O.
Unke
, and
M.
Gastegger
, in
Proceedings of the 38th International Conference on Machine Learning
, edited by
M.
Marina
and
Z.
Tong
(
PMLR, Proceedings of Machine Learning Research
,
2021
), Vol.
139
, pp.
9377
9388
.
48.
J.
Gasteiger
,
S.
Giri
,
J. T.
Margraf
, and
S.
Günnemann
, arXiv:2011.14115 (
2020
).
49.
M.
Cools-Ceuppens
,
J.
Dambre
, and
T.
Verstraelen
,
J. Chem. Theory Comput.
18
(
3
),
1672
1691
(
2022
).
50.
M.
Thurlemann
,
L.
Boselt
, and
S.
Riniker
,
J. Chem. Theory Comput.
18
(
3
),
1701
1710
(
2022
).
51.
M.
Thurlemann
,
L.
Boselt
, and
S.
Riniker
,
J. Chem. Theory Comput.
19
(
2
),
562
579
(
2023
).
52.
D. P.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
53.
C.
Kobayashi
,
J.
Jung
,
Y.
Matsunaga
,
T.
Mori
,
T.
Ando
,
K.
Tamura
,
M.
Kamiya
, and
Y.
Sugita
,
J. Comput. Chem.
38
(
25
),
2193
2206
(
2017
).
54.
J.
Jung
,
T.
Mori
,
C.
Kobayashi
,
Y.
Matsunaga
,
T.
Yoda
,
M.
Feig
, and
Y.
Sugita
,
WIREs Comput. Mol. Sci.
5
(
4
),
310
323
(
2015
).
55.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
56.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
,
J. Comput. Chem.
29
(
11
),
1859
1865
(
2008
).
57.
S.
Kim
,
J.
Lee
,
S.
Jo
,
C. L.
Brooks
,
H. S.
Lee
, and
W.
Im
,
J. Comput. Chem.
38
(
21
),
1879
1886
(
2017
).
58.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
59.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
(
19
),
8577
8593
(
1995
).
60.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
(
3
),
327
341
(
1977
).
61.
H. C.
Andersen
,
J. Comput. Phys.
52
(
1
),
24
34
(
1983
).
62.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
(
8
),
952
962
(
1992
).
63.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
(
4
),
931
948
(
2011
).
64.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
65.
H.
Oshima
,
S.
Re
, and
Y.
Sugita
,
J. Chem. Theory Comput.
15
(
10
),
5199
5208
(
2019
).
66.
Y.
Miao
,
V. A.
Feher
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
11
(
8
),
3584
3595
(
2015
).
67.
Y. T.
Pang
,
Y.
Miao
,
Y.
Wang
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
13
(
1
),
9
19
(
2017
).
68.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
(
2
),
785
789
(
1988
).
69.
A. D.
Becke
,
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
70.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
71.
T. H.
Dunning
,
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
72.
H.
Fukunishi
,
O.
Watanabe
, and
S.
Takada
,
J. Chem. Phys.
116
(
20
),
9058
9067
(
2002
).
73.
M. R.
Shirts
and
J. D.
Chodera
,
J. Chem. Phys.
129
(
12
),
124105
(
2008
).
74.
N. R.
Kern
,
J.
Lee
,
Y. K.
Choi
, and
W.
Im
, bioRxiv:2023.08.30.555590 (
2023
).
75.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
MacKerell
,
J. Comput. Chem.
31
(
4
),
671
690
(
2010
).
76.
W. B.
Yu
,
X. B.
He
,
K.
Vanommeslaeghe
, and
A. D.
MacKerell
,
J. Comput. Chem.
33
(
31
),
2451
2468
(
2012
).
77.
K.
Yagi
,
S.
Ito
, and
Y.
Sugita
,
J. Phys. Chem. B
125
(
18
),
4701
4713
(
2021
).
You do not currently have access to this content.