Carbon quantum dots have become attractive in various applications, such as drug delivery, biological sensing, photocatalysis, and solar cells. Among these, pH sensing via luminescence lifetime measurements of surface-functionalized carbon dots is one application currently investigated for their long lifetime and autonomous operation. In this article, we explore the theoretical connection between excitation lifetimes and the pH value of the surrounding liquid via the protonation and deprotonation of functional groups. Example calculations applied to m-phenylenediamine, phloroglucinol, and tethered disperse blue 1 are shown by applying a separation approach treating the electronic wave function of functional groups separately from the internal electronic structure of the (large) carbon dot. The bulk of the carbon dot is treated as an environment characterized by its optical spectrum that shifts the transition rates of the functional group. A simple relationship between pH, pKa, and mixed fluorescence lifetime is derived from the transition rates of the protonated and deprotonated states. pH sensitivity improves when the difference in the transition rates is greatest between protonated and deprotonated species, with the greatest sensitivity found where the pKa is close to the pH region of interest. The introduced model can directly be extended to consider multicomponent liquids and multiple protonation states.

1.
S.
Tang
,
H.
Thorarensen
,
C.
Brauner
,
C.
Wood
, and
A.
Farrell
, “
Modeling the accumulation of CO2 during high density, re-circulating transport of adult Atlantic salmon, Salmo salar, from observations aboard a sea-going commercial live-haul vessel
,”
Aquaculture
296
,
102
109
(
2009
).
2.
P. J.
Thomas
,
D.
Atamanchuk
,
J.
Hovdenes
, and
A.
Tengberg
, “
The use of novel optode sensor technologies for monitoring dissolved carbon dioxide and ammonia concentrations under live haul conditions
,”
Aquacult. Eng.
77
,
89
96
(
2017
).
3.
S.
Das
and
N.
Mangwani
, “
Ocean acidification and marine microorganisms: Responses and consequences
,”
Oceanologia
57
,
349
361
(
2015
).
4.
W. K.
Szapoczka
,
A. L.
Truskewycz
,
T.
Skodvin
,
B.
Holst
, and
P. J.
Thomas
, “
Fluorescence intensity and fluorescence lifetime measurements of various carbon dots as a function of pH
,”
Sci. Rep.
13
,
10660
(
2023
).
5.
A.
Wiora
and
J.
Wiora
, “
Over one-year long-term laboratory tests of pH electrodes in terms of industrial applications checking stabilities of their parameters and their influence on uncertainties of measurements
,”
Sensors
18
,
4102
(
2018
).
6.
C.
Staudinger
,
M.
Strobl
,
J.
Breininger
,
I.
Klimant
, and
S. M.
Borisov
, “
Fast and stable optical pH sensor materials for oceanographic applications
,”
Sens. Actuators, B
282
,
204
217
(
2019
).
7.
C.
Totland
,
P. J.
Thomas
,
B.
Holst
,
N.
Akhtar
,
J.
Hovdenes
, and
T.
Skodvin
, “
9-acridinemethanamine and acridine-9-carboxaldehyde as potential fluorescence lifetime pH indicators
,”
J. Fluoresc.
30
,
901
906
(
2020
).
8.
C.
Totland
,
P. J.
Thomas
,
B.
Holst
,
N.
Akhtar
,
J.
Hovdenes
, and
T.
Skodvin
, “
A broad-range fluorescence lifetime pH sensing material based on a single organic fluorophore
,”
J. Fluoresc.
29
,
1125
1131
(
2019
).
9.
J.
Liu
,
R.
Li
, and
B.
Yang
, “
Carbon dots: A new type of carbon-based nanomaterial with wide applications
,”
ACS Cent. Sci.
6
,
2179
2195
(
2020
).
10.
S.
Bagheri
,
A.
TermehYousefi
, and
J.
Mehrmashhadi
, “
Carbon dot-based fluorometric optical sensors: An overview
,”
Rev. Inorg. Chem.
39
,
179
197
(
2019
).
11.
Q.
Zhang
,
R.
Wang
,
B.
Feng
,
X.
Zhong
, and
K. K.
Ostrikov
, “
Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation
,”
Nat. Commun.
12
,
6856
(
2021
).
12.
J.
Fiedler
,
D. F.
Parsons
,
F. A.
Burger
,
P.
Thiyam
,
M.
Walter
,
I.
Brevik
,
C.
Persson
,
S. Y.
Buhmann
, and
M.
Boström
, “
Impact of effective polarisability models on the near-field interaction of dissolved greenhouse gases at ice and air interfaces
,”
Phys. Chem. Chem. Phys.
21
,
21296
21304
(
2019
).
13.
E. M.
Purcell
,
H. C.
Torrey
, and
R. V.
Pound
, “
Resonance absorption by nuclear magnetic moments in a solid
,”
Phys. Rev.
69
,
37
38
(
1946
).
14.
S.
Scheel
and
S. Y.
Buhmann
, “
Macroscopic quantum electrodynamics—Concepts and applications
,”
Acta Phys. Slovaca
58
,
675
809
(
2008
); arXiv:0902.3586.
15.
J.
Fiedler
,
K.
Berland
, and
S. Y.
Buhmann
, “
Purcell-induced suppression of superradiance for molecular overlayers on noble atom surfaces
,”
J. Chem. Phys.
157
,
194111
(
2022
).
16.
D.
Wencel
,
T.
Abel
, and
C.
McDonagh
, “
Optical chemical pH sensors
,”
Anal. Chem.
86
,
15
29
(
2014
).
17.
S.
Das
,
J.
Fiedler
,
O.
Stauffert
,
M.
Walter
,
S. Y.
Buhmann
, and
M.
Presselt
, “
Macroscopic quantum electrodynamics and density functional theory approaches to dispersion interactions between fullerenes
,”
Phys. Chem. Chem. Phys.
22
,
23295
23306
(
2020
).
18.
J.
Fiedler
,
K.
Berland
,
J. W.
Borchert
,
R. W.
Corkery
,
A.
Eisfeld
,
D.
Gelbwaser-Klimovsky
,
M. M.
Greve
,
B.
Holst
,
K.
Jacobs
,
M.
Krüger
,
D. F.
Parsons
,
C.
Persson
,
M.
Presselt
,
T.
Reisinger
,
S.
Scheel
,
F.
Stienkemeier
,
M.
Tømterud
,
M.
Walter
,
R. T.
Weitz
, and
J.
Zalieckas
, “
Perspectives on weak interactions in complex materials at different length scales
,”
Phys. Chem. Chem. Phys.
25
,
2671
2705
(
2023
).
19.
S. Y.
Buhmann
,
Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces
(
Springer
,
Heidelberg
,
2012
).
20.
S. Y.
Buhmann
,
Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction
,
Springer Tracts in Modern Physics
(
Springer
,
Heidelberg
,
2012
).
21.
S.
Ribeiro
,
S.
Yoshi Buhmann
,
T.
Stielow
, and
S.
Scheel
, “
Casimir-polder interaction from exact diagonalization and surface-induced state mixing
,”
Europhys. Lett.
110
,
51003
(
2015
).
22.
W. E.
Lamb
and
R. C.
Retherford
, “
Fine structure of the hydrogen atom by a microwave method
,”
Phys. Rev.
72
,
241
243
(
1947
).
23.
R. C.
Hilborn
, “
Einstein coefficients, cross sections, f values, dipole moments, and all that
,”
Am. J. Phys.
50
,
982
986
(
1982
); https://pubs.aip.org/aapt/ajp/article-pdf/50/11/982/11835413/982_1_online.pdf.
24.
H. T.
Dung
,
S. Y.
Buhmann
,
L.
Knöll
,
D.-G.
Welsch
,
S.
Scheel
, and
J.
Kästel
, “
Electromagnetic-field quantization and spontaneous decay in left-handed media
,”
Phys. Rev. A
68
,
043816
(
2003
); arXiv:0306028 [quant-ph].
25.
S.
Scheel
,
L.
Knöll
,
D.-G.
Welsch
, and
S. M.
Barnett
, “
Quantum local-field corrections and spontaneous decay
,”
Phys. Rev. A
60
,
1590
1597
(
1999
).
26.
D. V.
Stergiou
,
M. I.
Prodromidis
,
P. G.
Veltsistas
, and
N. P.
Evmiridis
, “
Study of the electrochemical behavior of disperse blue 1-modified graphite electrodes. Application to the flow determination of NADH
,”
Electroanalysis
16
,
949
954
(
2004
).
27.
R. H.
Peters
and
H. H.
Sumner
, “
Proceedings of the society
,”
J. Soc. Dyers Colour.
72
,
77
86
(
1956
).
28.
M.
Pelton
and
G.
Bryant
,
Introduction to Metal-Nanoparticle Plasmonics
,
A Wiley-Science Wise Co-Publication
(
Wiley
,
2013
).
29.
D.
Perrin
,
Dissociation Constants of Organic Bases in Aqueous Solution
(
Butterworths
,
London
,
1965
), supplement, 1972.
30.
R.
Manoharan
and
S. K.
Dogra
, “
Spectral characteristics of phenylenediamines and their various protonated species
,”
Bull. Chem. Soc. Jpn.
60
,
4409
4415
(
2006
); https://academic.oup.com/bcsj/article-pdf/60/12/4409/55724200/bcsj.60.4409.pdf.
31.
M.
Lohrie
and
W.
Knoche
, “
Dissociation and keto-enol tautomerism of phloroglucinol and its anions in aqueous solution
,”
J. Am. Chem. Soc.
115
,
919
924
(
1993
).
32.
E.
Jin
,
Q.
Yang
,
C.-W.
Ju
,
Q.
Chen
,
K.
Landfester
,
M.
Bonn
,
K.
Müllen
,
X.
Liu
, and
A.
Narita
, “
A highly luminescent nitrogen-doped nanographene as an acid- and metal-sensitive fluorophore for optical imaging
,”
J. Am. Chem. Soc.
143
,
10403
10412
(
2021
).
33.
C.
Zheng
,
X.
An
, and
J.
Gong
, “
Novel pH sensitive N-doped carbon dots with both long fluorescence lifetime and high quantum yield
,”
RSC Adv.
5
,
32319
32322
(
2015
).
34.
B.
Yao
,
H.
Huang
,
Y.
Liu
, and
Z.
Kang
, “
Carbon dots: A small conundrum
,”
Trends Chem.
1
,
235
246
(
2019
); special Issue Part Two: Big Questions in Chemistry.
35.
M.
Li
,
T.
Chen
,
J. J.
Gooding
, and
J.
Liu
, “
Review of carbon and graphene quantum dots for sensing
,”
ACS Sens.
4
,
1732
1748
(
2019
).
36.
S.
Adachi
,
The Handbook on Optical Constants of Metals
(
World Scientific
,
2012
).
37.
L.
Bergström
, “
Hamaker constants of inorganic materials
,”
Adv. Colloid Interface Sci.
70
,
125
169
(
1997
).
38.
J.
Fiedler
,
M.
Boström
,
C.
Persson
,
I.
Brevik
,
R.
Corkery
,
S. Y.
Buhmann
, and
D. F.
Parsons
, “
Full-spectrum high-resolution modeling of the dielectric function of water
,”
J. Phys. Chem. B
124
,
3103
3113
(
2020
).
39.
O.
Kenneth
,
I.
Klich
,
A.
Mann
, and
M.
Revzen
, “
Repulsive Casimir forces
,”
Phys. Rev. Lett.
89
,
033001
(
2002
).
40.
D. A. T.
Somers
and
J. N.
Munday
, “
Conditions for repulsive Casimir forces between identical birefringent materials
,”
Phys. Rev. A
95
,
022509
(
2017
).
41.
J.
Fiedler
,
M.
Walter
, and
S. Y.
Buhmann
, “
Effective screening of medium-assisted van der Waals interactions between embedded particles
,”
J. Chem. Phys.
154
,
104102
(
2021
).
42.
M.
Boström
,
R. W.
Corkery
,
E. R. A.
Lima
,
O. I.
Malyi
,
S. Y.
Buhmann
,
C.
Persson
,
I.
Brevik
,
D. F.
Parsons
, and
J.
Fiedler
, “
Dispersion forces stabilize ice coatings at certain gas hydrate interfaces that prevent water wetting
,”
ACS Earth Space Chem.
3
,
1014
1022
(
2019
).
43.
J.
Fiedler
,
F.
Spallek
,
P.
Thiyam
,
C.
Persson
,
M.
Boström
,
M.
Walter
, and
S. Y.
Buhmann
, “
Dispersion forces in inhomogeneous planarly layered media: A one-dimensional model for effective polarizabilities
,”
Phys. Rev. A
99
,
062512
(
2019
).
44.
J.
Fiedler
,
P.
Thiyam
,
A.
Kurumbail
,
F. A.
Burger
,
M.
Walter
,
C.
Persson
,
I.
Brevik
,
D. F.
Parsons
,
M.
Boström
, and
S. Y.
Buhmann
, “
Effective polarizability models
,”
J. Phys. Chem. A
121
,
9742
9751
(
2017
).
45.
E.
Zossimova
,
J.
Fiedler
,
F.
Vollmer
, and
M.
Walter
, “
Hybrid quantum-classical polarizability model for single molecule biosensing
,”
Nanoscale
16
,
5820
5828
(
2024
).
46.
E.
Aprá
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
A.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Wolinski
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
47.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
); https://pubs.aip.org/aip/jcp/article-pdf/98/7/5648/11091662/5648_1_online.pdf.
48.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
49.
A.
Klamt
, “
The COSMO and COSMO-RS solvation models
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1338
(
2018
).
You do not currently have access to this content.