Understanding the dynamics of excited-state vibrational energy relaxation in photosynthetic pigments is crucial for elucidating the mechanisms underlying energy transfer processes in light-harvesting complexes. Utilizing advanced femtosecond broadband transient fluorescence (TF) spectroscopy, we explored the excited-state vibrational dynamics of Chlorophyll-a (Chl-a) both in solution and within the light-harvesting complex II (LHCII). We discovered a vibrational cooling (VC) process occurring over ∼6 ps in Chl-a in ethanol solution following Soret band excitation, marked by a notable ultrafast TF blueshift and spectral narrowing. This VC process, crucial for regulating the vibronic lifetimes, was further elucidated through the direct observation of the population dynamics of higher vibrational states within the Qy electronic state. Notably, Chl-a within LHCII demonstrated significantly faster VC dynamics, unfolding within a few hundred femtoseconds and aligning with the ultrafast energy transfer processes observed within the complex. Our findings shed light on the complex interaction between electronic and vibrational states in photosynthetic pigments, underscoring the pivotal role of vibrational dynamics in enabling efficient energy transfer within light-harvesting complexes.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
John Wiley & Sons
,
2021
).
2.
R.
Croce
and
H.
van Amerongen
,
Science
369
,
eaay2058
(
2020
).
3.
I.
Mukerji
and
K.
Sauer
,
Biochim. Biophys. Acta, Bioenerg.
1142
,
311
(
1993
).
4.
G.
Trinkunas
et al,
J. Phys. Chem. B
101
,
7313
(
1997
).
5.
C. C.
Gradinaru
et al,
J. Phys. Chem. B
104
,
9330
(
2000
).
6.
X.
Pan
,
Z.
Liu
,
M.
Li
, and
W.
Chang
,
Curr. Opin. Struct. Biol.
23
,
515
(
2013
).
7.
A.
Dingle
,
BSc (Hons) Projekverslag No. 79583
,
Rhodes University
,
2014
.
8.
N. H. C.
Lewis
et al,
J. Phys. Chem. Lett.
7
,
4197
(
2016
).
9.
M. H.
Lee
and
A.
Troisi
,
J. Chem. Phys.
146
,
075101
(
2017
).
10.
E. A.
Arsenault
et al,
Nat. Commun.
11
,
1460
(
2020
).
11.
R.
Zhu
et al,
J. Chem. Phys.
156
,
125101
(
2022
).
12.
A.
Weiner
and
E.
Ippen
,
Chem. Phys. Lett.
114
,
456
(
1985
).
13.
T.
Elsaesser
and
W.
Kaiser
,
Annu. Rev. Phys. Chem.
42
,
83
(
1991
).
14.
S.
Kovalenko
,
R.
Schanz
,
H.
Hennig
, and
N.
Ernsting
,
J. Chem. Phys.
115
,
3256
(
2001
).
15.
J.-Y.
Liu
et al,
J. Phys. Chem. A
107
,
10857
(
2003
).
16.
O.
Braem
,
T. J.
Penfold
,
A.
Cannizzo
, and
M.
Chergui
,
Phys. Chem. Chem. Phys.
14
,
3513
(
2012
).
17.
J. R.
Hill
and
D. D.
Dlott
,
J. Chem. Phys.
89
,
842
(
1988
).
18.
J. R.
Hill
et al,
J. Chem. Phys.
88
,
949
(
1988
).
19.
D.
Kosumi
et al,
J. Chem. Phys.
139
,
034311
(
2013
).
20.
A.
Mokhtari
,
A.
Chebira
, and
J.
Chesnoy
,
J. Opt. Soc. Am. B
7
,
1551
(
1990
).
21.
K.
Ohta
,
T. J.
Kang
,
K.
Tominaga
, and
K.
Yoshihara
,
Chem. Phys.
242
,
103
(
1999
).
22.
23.
A.
Pigliucci
,
G.
Duvanel
,
L. M. L.
Daku
, and
E.
Vauthey
,
J. Phys. Chem. A
111
,
6135
(
2007
).
24.
T.
Yamaguchi
,
Y.
Kimura
, and
N.
Hirota
,
J. Chem. Phys.
113
,
2772
(
2000
).
25.
E.
Vogt
et al,
J. Phys. Chem. Lett.
12
,
11346
(
2021
).
26.
L. S.
Forster
and
R.
Livingston
,
J. Chem. Phys.
20
,
1315
(
1952
).
27.
P.
Fita
,
Y.
Stepanenko
, and
C.
Radzewicz
,
Appl. Phys. Lett.
86
,
021909
(
2005
).
28.
X. H.
Chen
,
X. F.
Han
,
Y. X.
Weng
, and
J. Y.
Zhang
,
Appl. Phys. Lett.
89
,
061127
(
2006
).
29.
X. F.
Han
,
X. H.
Chen
,
Y. X.
Weng
, and
J. Y.
Zhang
,
J. Opt. Soc. Am. B
24
,
1633
(
2007
).
30.
H. L.
Chen
,
Y. X.
Weng
, and
J. Y.
Zhang
,
J. Opt. Soc. Am. B
26
,
1627
(
2009
).
31.
H. L.
Chen
,
Y. X.
Weng
, and
X. Y.
Li
,
Chin. J. Chem. Phys.
24
,
253
(
2011
).
33.
P.
Mao
,
Z.
Wang
,
W.
Dang
, and
Y.
Weng
,
Rev. Sci. Instrum.
86
,
123113
(
2015
).
34.
35.
H.
Liu
et al,
Chin. J. Chem. Phys.
36
,
655
(
2023
).
38.
E.
Cui
et al,
Rev. Sci. Instrum.
95
,
033008
(
2024
).
39.
H.
Zhao
,
Q.
Zhang
, and
Y.-X.
Weng
,
J. Phys. Chem. C
111
,
3762
(
2007
).
40.
M.
Zhu
,
G.
Zhu
, and
Y.
Weng
,
Appl. Spectrosc.
67
,
506
(
2013
).
41.
G.
Zhu
,
M.
Zhu
, and
Y.
Weng
,
Appl. Spectrosc.
68
,
1374
(
2014
).
42.
Z.
Chi
,
H.
Chen
,
Q.
Zhao
, and
Y.-X.
Weng
,
J. Chem. Phys.
151
,
114704
(
2019
).
43.
44.
A. B. J.
Parusel
and
S.
Grimme
,
J. Phys. Chem. B
104
,
5395
(
2000
).
45.
M.
Ratsep
,
J.
Linnanto
, and
A.
Freiberg
,
J. Chem. Phys.
130
,
194501
(
2009
).
48.
49.
X. X.
Zhang
et al,
Rev. Sci. Instrum.
82
,
063108
(
2011
).
50.
52.
Y.
Shi
,
J. Y.
Liu
, and
K. L.
Han
,
Chem. Phys. Lett.
410
,
260
(
2005
).
53.
W. P.
Bricker
et al,
Sci. Rep.
5
,
13625
(
2015
).
54.
P. M.
Shenai
et al,
J. Phys. Chem. B
120
,
49
(
2016
).
55.
M.
Ratsep
,
J. M.
Linnanto
, and
A.
Freiberg
,
J. Phys. Chem. B
123
,
7149
(
2019
).
56.
N. H. C.
Lewis
and
G. R.
Fleming
,
J. Phys. Chem. Lett.
7
,
831
(
2016
).
57.
V. O.
Kompanets
et al,
JETP Lett.
92
,
135
(
2010
).
58.
M.
Vangurp
,
G.
Vanginkel
, and
Y. K.
Levine
,
Biochim. Biophys. Acta, Bioenerg.
973
,
405
(
1989
).
59.
M. A. M. J. v.
Zandvoort
et al,
Photochem. Photobiol.
62
,
299
(
1995
).
60.
S.
Akimoto
and
M.
Mimuro
,
Photochem. Photobiol.
83
,
163
(
2007
).
61.
M.
Du
,
X.
Xie
,
L.
Mets
, and
G. R.
Fleming
,
J. Phys. Chem.
98
,
4736
(
1994
).
You do not currently have access to this content.