The understanding on the growth mechanism of complex gold nanostructures both experimentally and theoretically can guide their design and fabrication toward various applications. In this work, we report a cysteine-directed overgrowth of penta-twinned nanorod seeds into jagged gold bipyramids with discontinuous stepped {hhk} facets. By monitoring the growth process, we find that {hhk} facets with large k/h values (∼7) are formed first at two ends of the nanorods, followed by the protrusion of the middle section exposing {hhk} facets with smaller indices (k/h ∼ 2–3). Molecular dynamics simulations indicate that the strong adsorption of cysteine molecules on {110} facets is likely responsible for the formation of stepped {hhk} facets, and the stronger adsorption of cysteine molecules on {hhk} facets with smaller k/h compared to that on {hhk} facets with larger k/h is a possible cause of the discontinuity of {hhk} facets at the middle of gold bipyramids. The obtained jagged gold bipyramids display large field enhancement under illumination due to their sharp nanostructures, demonstrating their application potentials in surface-enhanced spectroscopy and catalysis.

1.
S.
Eustis
and
M. A.
El-Sayed
,
Chem. Soc. Rev.
35
(
3
),
209
217
(
2006
).
2.
L.
Brus
,
Acc. Chem. Res.
41
(
12
),
1742
1749
(
2008
).
3.
L.
Song
,
J.
Chen
,
B. B.
Xu
, and
Y.
Huang
,
ACS Nano
15
(
12
),
18822
18847
(
2021
).
4.
S.
Nie
and
S. R.
Emory
,
Science
275
(
5303
),
1102
1106
(
1997
).
5.
J.
Jiang
,
K.
Bosnick
,
M.
Maillard
, and
L.
Brus
,
J. Phys. Chem. B
107
(
37
),
9964
9972
(
2003
).
6.
C.
Humbert
,
T.
Noblet
,
L.
Dalstein
,
B.
Busson
, and
G.
Barbillon
,
Materials
12
(
5
),
836
(
2019
).
7.
C.
Zhan
,
M.
Moskovits
, and
Z.-Q.
Tian
,
Matter
3
(
1
),
42
56
(
2020
).
8.
N.
Lemcoff
,
N. B.
Nechmad
,
O.
Eivgi
,
E.
Yehezkel
,
O.
Shelonchik
,
R. S.
Phatake
,
D.
Yesodi
,
A.
Vaisman
,
A.
Biswas
,
N. G.
Lemcoff
, and
Y.
Weizmann
,
Nat. Chem.
15
,
475
482
(
2023
).
9.
W. Q.
Lim
and
Z.
Gao
,
Nano Today
11
(
2
),
168
188
(
2016
).
10.
N. G.
Bastus
,
J.
Comenge
, and
V.
Puntes
,
Langmuir
27
(
17
),
11098
11105
(
2011
).
11.
H.
Xia
,
Y.
Xiahou
,
P.
Zhang
,
W.
Ding
, and
D.
Wang
,
Langmuir
32
(
23
),
5870
5880
(
2016
).
12.
J.
Zhang
,
M. R.
Langille
,
M. L.
Personick
,
K.
Zhang
,
S.
Li
, and
C. A.
Mirkin
,
J. Am. Chem. Soc.
132
(
40
),
14012
14014
(
2010
).
13.
J. E.
Park
,
Y.
Lee
, and
J. M.
Nam
,
Nano Lett.
18
,
6475
6482
(
2018
).
14.
X.
Cui
,
F.
Qin
,
Q.
Ruan
,
X.
Zhuo
, and
J.
Wang
,
Adv. Funct. Mater.
28
(
11
),
1705516
(
2018
).
15.
M. N.
O'Brien
,
M. R.
Jones
,
K. L.
Kohlstedt
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Nano Lett.
15
(
2
),
1012
1017
(
2015
).
16.
Y.
Huang
,
A. R.
Ferhan
,
Y.
Gao
,
A.
Dandapat
, and
D. H.
Kim
,
Nanoscale
6
(
12
),
6496
6500
(
2014
).
17.
Y.
Zhai
,
J. S.
DuChene
,
Y. C.
Wang
,
J.
Qiu
,
A. C.
Johnston-Peck
,
B.
You
,
W.
Guo
,
B.
DiCiaccio
,
K.
Qian
,
E. W.
Zhao
,
F.
Ooi
,
D.
Hu
,
D.
Su
,
E. A.
Stach
,
Z.
Zhu
, and
W. D.
Wei
,
Nat. Mater.
15
(
8
),
889
895
(
2016
).
18.
H.-H.
Chang
and
C. J.
Murphy
,
Chem. Mater.
30
(
4
),
1427
1435
(
2018
).
19.
W.
Niu
,
Y. A.
Chua
,
W.
Zhang
,
H.
Huang
, and
X.
Lu
,
J. Am. Chem. Soc.
137
(
33
),
10460
10463
(
2015
).
20.
M.
Liu
and
P.
Guyot-Sionnest
,
J. Phys. Chem. B
109
(
47
),
22192
22200
(
2005
).
21.
X.
Zhang
,
R.
Gallagher
,
D.
He
, and
G.
Chen
,
Chem. Mater.
32
(
13
),
5626
5633
(
2020
).
22.
M. L.
Personick
,
M. R.
Langille
,
J.
Zhang
,
N.
Harris
,
G. C.
Schatz
, and
C. A.
Mirkin
,
J. Am. Chem. Soc.
133
(
16
),
6170
6173
(
2011
).
23.
A.
Sanchez-Iglesias
,
N.
Winckelmans
,
T.
Altantzis
,
S.
Bals
,
M.
Grzelczak
, and
L. M.
Liz-Marzan
,
J. Am. Chem. Soc.
139
(
1
),
107
110
(
2017
).
24.
Y.
Ma
,
Q.
Kuang
,
Z.
Jiang
,
Z.
Xie
,
R.
Huang
, and
L.
Zheng
,
Angew. Chem., Int. Ed.
47
(
46
),
8901
8904
(
2008
).
25.
Y.
Yu
,
Q.
Zhang
,
X.
Lu
, and
J. Y.
Lee
,
J. Phys. Chem. C
114
(
25
),
11119
11126
(
2010
).
26.
T.
Ming
,
W.
Feng
,
Q.
Tang
,
F.
Wang
,
L.
Sun
,
J.
Wang
, and
C.
Yan
,
J. Am. Chem. Soc.
131
(
45
),
16350
16351
(
2009
).
27.
Y.
Xia
,
K. D.
Gilroy
,
H. C.
Peng
, and
X.
Xia
,
Angew. Chem., Int. Ed.
56
(
1
),
60
95
(
2017
).
28.
M. Q.
He
,
Y.
Ai
,
W.
Hu
,
L.
Guan
,
M.
Ding
, and
Q.
Liang
,
Adv. Mater.
35
(
46
),
e2211915
(
2023
).
29.
L.
Vigderman
and
E. R.
Zubarev
,
Langmuir
28
(
24
),
9034
9040
(
2012
).
30.
Q.
Zhang
,
Y.
Zhou
,
E.
Villarreal
,
Y.
Lin
,
S.
Zou
, and
H.
Wang
,
Nano Lett.
15
(
6
),
4161
4169
(
2015
).
31.
C.
Bi
,
Y.
Song
,
H.
Zhao
, and
G.
Liu
,
ACS Appl. Nano Mater.
4
(
5
),
4584
4592
(
2021
).
32.
X.
Kou
,
S.
Zhang
,
Z.
Yang
,
C.
Tsung
,
G. D.
Stucky
,
L.
Sun
,
J.
Wang
, and
C.
Yan
,
J. Am. Chem. Soc.
129
(
20
),
6402
6404
(
2007
).
33.
J.
Huang
,
Y.
Zhu
,
C.
Liu
,
Z.
Shi
,
A.
Fratalocchi
, and
Y.
Han
,
Nano Lett.
16
(
1
),
617
623
(
2016
).
34.
N. N.
Zhang
,
Z. L.
Shen
,
S. Y.
Gao
,
F.
Peng
,
Z. J.
Cao
,
Y.
Wang
,
Z.
Wang
,
W.
Zhang
,
Y.
Yang
,
K.
Liu
, and
T.
Sun
,
Adv. Opt. Mater.
11
(
18
),
2203119
(
2023
).
35.
S.
Wang
,
L.
Zheng
,
W.
Chen
,
L.
Ji
,
L.
Zhang
,
W.
Lu
,
Z.
Fang
,
F.
Guo
,
L.
Qi
, and
M.
Liu
,
CCS Chem.
3
(
9
),
2473
2484
(
2021
).
36.
F.
Wu
,
F.
Li
,
Y.
Tian
,
X.
Lv
,
X.
Luan
,
G.
Xu
, and
W.
Niu
,
Nano Lett.
23
(
17
),
8233
8240
(
2023
).
37.
A.
Sanchez-Iglesias
,
K.
Jenkinson
,
S.
Bals
, and
L. M.
Liz-Marzan
,
J. Phys. Chem. C
125
(
43
),
23937
23944
(
2021
).
38.
K.
Park
,
H.
Koerner
, and
R. A.
Vaia
,
Nano Lett.
10
(
4
),
1433
1439
(
2010
).
39.
Q.
Li
,
X.
Zhuo
,
S.
Li
,
Q.
Ruan
,
Q. H.
Xu
, and
J.
Wang
,
Adv. Opt. Mater.
3
(
6
),
801
812
(
2015
).
40.
K.
Vanommeslaeghe
,
A. D.
MacKerell
, Jr.
, and
J.
Chem
,
J. Chem. Inf. Model.
52
(
12
),
3144
3154
(
2012
).
41.
K.
Vanommeslaeghe
,
E. P.
Raman
, and
A. D.
MacKerell
,
J. Chem. Inf. Model.
52
(
12
),
3155
3168
(
2012
).
42.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
43.
H.
Heinz
,
R. A.
Vaia
,
B. L.
Farmer
, and
R. R.
Naik
,
J. Phys. Chem. C
112
,
17281
17290
(
2008
).
44.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
25
(
2015
).
45.
G. M. V.
Torrie
and
J.
Valleau
,
J. Comput. Phys.
23
,
187
199
(
1977
).
46.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
(
8
),
1011
1021
(
2004
).
47.
J. S.
Hub
,
B. L.
de Groot
, and
D.
van der Spoel
,
J. Chem. Theory Comput.
6
,
3713
3720
(
2010
).
48.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
(
12
),
4370
4379
(
1972
).
49.
B. P.
Khanal
and
E. R.
Zubarev
,
ACS Nano
13
(
2
),
2370
2378
(
2019
).
50.
X.
Kang
,
Q.
Ruan
,
H.
Zhang
,
F.
Bao
,
J.
Guo
,
M.
Tang
,
S.
Cheng
, and
J.
Wang
,
Nanoscale
9
(
18
),
5879
5886
(
2017
).

Supplementary Material

You do not currently have access to this content.