Halide perovskite nanocrystals are at the forefront of materials research due to their remarkable optoelectronic properties and versatile applications. While their lattice structure and optical properties have been extensively investigated for the structure–property correlation, their lattice dynamics, the physical link between the lattice structure and optoelectronic properties, has been much less visited. We report the evolution of structural dynamics of a series of cesium lead halide perovskite nanocrystals whose size and morphology are systematically varied by synthesis temperature. Low-frequency Raman spectroscopy uncovers the nanocrystals’ structural dynamics, including a relaxational spectral continuum from ligand librations and a phonon spectrum evolving with nanocrystal size. As the size of nanocrystals increases, their phonon spectrum becomes more intense, and their spectral weights redistribute with new first- and second-order modes being activated. The linewidth of the observed phonon modes generally broadens as the nanocrystal grows larger, an interesting deviation from the established phonon confinement model. We suggest that strong confinement and truncation of the lattice and ligands anchoring on the surface might lead to pinning of the lattice dynamics at nanoscale. These findings offer new insights into the bulk–nano-transition in halide perovskite soft semiconductors.

1.
C. C.
Stoumpos
and
M. G.
Kanatzidis
, “
The renaissance of halide perovskites and their evolution as emerging semiconductors
,”
Acc. Chem. Res.
48
(
10
),
2791
2802
(
2015
).
2.
E.
Aydin
,
T. G.
Allen
,
M.
De Bastiani
,
A.
Razzaq
,
L.
Xu
,
E.
Ugur
,
J.
Liu
, and
S.
De Wolf
, “
Pathways toward commercial perovskite/silicon tandem photovoltaics
,”
Science
383
(
6679
),
eadh3849
(
2024
).
3.
D. A.
Egger
,
A.
Bera
,
D.
Cahen
,
G.
Hodes
,
T.
Kirchartz
,
L.
Kronik
,
R.
Lovrincic
,
A. M.
Rappe
,
D. R.
Reichman
, and
O.
Yaffe
, “
What remains unexplained about the properties of halide perovskites?
,”
Adv. Mater.
30
(
20
),
1800691
(
2018
).
4.
Q. A.
Akkerman
and
L.
Manna
, “
What defines a halide perovskite?
,”
ACS Energy Lett.
5
(
2
),
604
610
(
2020
).
5.
Q. A.
Akkerman
,
G.
Rainò
,
M. V.
Kovalenko
, and
L.
Manna
, “
Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
,”
Nat. Mater.
17
(
5
),
394
405
(
2018
).
6.
H.
Utzat
,
W.
Sun
,
A. E. K.
Kaplan
,
F.
Krieg
,
M.
Ginterseder
,
B.
Spokoyny
,
N. D.
Klein
,
K. E.
Shulenberger
,
C. F.
Perkinson
,
M. V.
Kovalenko
, and
M. G.
Bawendi
, “
Coherent single-photon emission from colloidal lead halide perovskite quantum dots
,”
Science
363
(
6431
),
1068
1072
(
2019
).
7.
A.
Dey
,
J.
Ye
,
A.
De
,
E.
Debroye
,
S. K.
Ha
,
E.
Bladt
,
A. S.
Kshirsagar
,
Z.
Wang
,
J.
Yin
,
Y.
Wang
,
L. N.
Quan
,
F.
Yan
,
M.
Gao
,
X.
Li
,
J.
Shamsi
,
T.
Debnath
,
M.
Cao
,
M. A.
Scheel
,
S.
Kumar
,
J. A.
Steele
,
M.
Gerhard
,
L.
Chouhan
,
K.
Xu
,
X.
Wu
,
Y.
Li
,
Y.
Zhang
,
A.
Dutta
,
C.
Han
,
I.
Vincon
,
A. L.
Rogach
,
A.
Nag
,
A.
Samanta
,
B. A.
Korgel
,
C.-J.
Shih
,
D. R.
Gamelin
,
D. H.
Son
,
H.
Zeng
,
H.
Zhong
,
H.
Sun
,
H. V.
Demir
,
I. G.
Scheblykin
,
I.
Mora-Seró
,
J. K.
Stolarczyk
,
J. Z.
Zhang
,
J.
Feldmann
,
J.
Hofkens
,
J. M.
Luther
,
J.
Pérez-Prieto
,
L.
Li
,
L.
Manna
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
,
M. B. J.
Roeffaers
,
N.
Pradhan
,
O. F.
Mohammed
,
O. M.
Bakr
,
P.
Yang
,
P.
Müller-Buschbaum
,
P. V.
Kamat
,
Q.
Bao
,
Q.
Zhang
,
R.
Krahne
,
R. E.
Galian
,
S. D.
Stranks
,
S.
Bals
,
V.
Biju
,
W. A.
Tisdale
,
Y.
Yan
,
R. L. Z.
Hoye
, and
L.
Polavarapu
, “
State of the art and prospects for halide perovskite nanocrystals
,”
ACS Nano
15
,
10775
(
2021
).
8.
C.
Katan
,
A. D.
Mohite
, and
J.
Even
, “
Entropy in halide perovskites
,”
Nat. Mater.
17
(
5
),
377
379
(
2018
).
9.
K.
Miyata
and
X.-Y.
Zhu
, “
Ferroelectric large polarons
,”
Nat. Mater.
17
(
5
),
379
381
(
2018
).
10.
O.
Yaffe
,
Y.
Guo
,
L. Z.
Tan
,
D. A.
Egger
,
T.
Hull
,
C. C.
Stoumpos
,
F.
Zheng
,
T. F.
Heinz
,
L.
Kronik
,
M. G.
Kanatzidis
,
J. S.
Owen
,
A. M.
Rappe
,
M. A.
Pimenta
, and
L. E.
Brus
, “
Local polar fluctuations in lead halide perovskite crystals
,”
Phys. Rev. Lett.
118
(
13
),
136001
(
2017
).
11.
A. N.
Beecher
,
O. E.
Semonin
,
J. M.
Skelton
,
J. M.
Frost
,
M. W.
Terban
,
H.
Zhai
,
A.
Alatas
,
J. S.
Owen
,
A.
Walsh
, and
S. J. L.
Billinge
, “
Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite
,”
ACS Energy Lett.
1
(
4
),
880
887
(
2016
).
12.
A. L.
Efros
and
L. E.
Brus
, “
Nanocrystal quantum dots: From discovery to modern development
,”
ACS Nano
15
(
4
),
6192
6210
(
2021
).
13.
J.
Owen
and
L.
Brus
, “
Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots
,”
J. Am. Chem. Soc.
139
(
32
),
10939
10943
(
2017
).
14.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
(
6
),
3692
3696
(
2015
).
15.
Y.
Bekenstein
,
B. A.
Koscher
,
S. W.
Eaton
,
P.
Yang
, and
A. P.
Alivisatos
, “
Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies
,”
J. Am. Chem. Soc.
137
(
51
),
16008
16011
(
2015
).
16.
A.
Kostopoulou
,
M.
Sygletou
,
K.
Brintakis
,
A.
Lappas
, and
E.
Stratakis
, “
Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires
,”
Nanoscale
9
(
46
),
18202
18207
(
2017
).
17.
W.
Sun
,
R.
Yun
,
Y.
Liu
,
X.
Zhang
,
M.
Yuan
,
L.
Zhang
, and
X.
Li
, “
Ligands in lead halide perovskite nanocrystals: From synthesis to optoelectronic applications
,”
Small
19
(
11
),
2205950
(
2023
).
18.
J. S.
Son
,
X.-D.
Wen
,
J.
Joo
,
J.
Chae
,
S.
Baek
,
K.
Park
,
J. H.
Kim
,
K.
An
,
J. H.
Yu
,
S. G.
Kwon
,
S.-H.
Choi
,
Z.
Wang
,
Y.-W.
Kim
,
Y.
Kuk
,
R.
Hoffmann
, and
T.
Hyeon
, “
Large-scale soft colloidal template synthesis of 1.4-nm thick CdSe nanosheets
,”
Angew. Chem., Int. Ed.
48
(
37
),
6861
6864
(
2009
).
19.
F.
Di Stasio
,
M.
Imran
,
Q. A.
Akkerman
,
M.
Prato
,
L.
Manna
, and
R.
Krahne
, “
Reversible concentration-dependent photoluminescence quenching and change of emission color in CsPbBr3 nanowires and nanoplatelets
,”
J. Phys. Chem. Lett.
8
(
12
),
2725
2729
(
2017
).
20.
S.
Sun
,
D. T. N.
Rathnayake
, and
Y.
Guo
, “
Asymmetrical spectral continuum between anti-Stokes and Stokes scattering revealed in low-frequency surface-enhanced Raman spectroscopy
,”
J. Phys. Chem. C
126
(
27
),
11193
11200
(
2022
).
21.
G. G.
Raju
,
Dielectrics in Electric Fields
, 2nd ed. (
Taylor & Francis, CRC
,
2016
).
22.
M.
Menahem
,
N.
Benshalom
,
M.
Asher
,
S.
Aharon
,
R.
Korobko
,
O.
Hellman
, and
O.
Yaffe
, “
Disorder origin of Raman scattering in perovskite single crystals
,”
Phys. Rev. Mater.
7
(
4
),
044602
(
2023
).
23.
J. P.
Sokoloff
,
L. L.
Chase
, and
D.
Rytz
, “
Direct observation of relaxation modes in KNbO3 and BaTiO3 using inelastic light scattering
,”
Phys. Rev. B
38
(
1
),
597
605
(
1988
).
24.
I. G.
Siny
,
S. G.
Lushnikov
,
R. S.
Katiyar
, and
E. A.
Rogacheva
, “
Central peak in light scattering from the relaxor ferroelectric PbMg1/3Nb2/3O3
,”
Phys. Rev. B
56
(
13
),
7962
7966
(
1997
).
25.
B.
Fluegel
,
A. V.
Mialitsin
,
D. A.
Beaton
,
J. L.
Reno
, and
A.
Mascarenhas
, “
Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors
,”
Nat. Commun.
6
(
1
),
7136
(
2015
).
26.
Y. S.
Ponosov
and
S. V.
Streltsov
, “
Measurements of Raman scattering by electrons in metals: The effects of electron-phonon coupling
,”
Phys. Rev. B
86
(
4
),
045138
(
2012
).
27.
T. P.
Devereaux
and
R.
Hackl
, “
Inelastic light scattering from correlated electrons
,”
Rev. Mod. Phys.
79
(
1
),
175
233
(
2007
).
28.
K.
Miyata
,
T. L.
Atallah
, and
X.-Y.
Zhu
, “
Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation
,”
Sci. Adv.
3
(
10
),
e1701469
(
2017
).
29.
P.
Guo
,
Y.
Xia
,
J.
Gong
,
C. C.
Stoumpos
,
K. M.
McCall
,
G. C. B.
Alexander
,
Z.
Ma
,
H.
Zhou
,
D. J.
Gosztola
,
J. B.
Ketterson
,
M. G.
Kanatzidis
,
T.
Xu
,
M. K. Y.
Chan
, and
R. D.
Schaller
, “
Polar fluctuations in metal halide perovskites uncovered by acoustic phonon anomalies
,”
ACS Energy Lett.
2
(
10
),
2463
2469
(
2017
).
30.
W. H.
Weber
and
R.
Merlin
,
Raman Scattering in Materials Science
,
Springer Series in Materials Science
(
Springer
,
Berlin, Heidelberg
,
2000
).
31.
L.
Huang
and
W. R. L.
Lambrecht
, “
Lattice dynamics in perovskite halides CsSnX3 with X = I, Br, Cl
,”
Phys. Rev. B
90
(
19
),
195201
(
2014
).
32.
F.
Brivio
,
J. M.
Frost
,
J. M.
Skelton
,
A. J.
Jackson
,
O. J.
Weber
,
M. T.
Weller
,
A. R.
Goñi
,
A. M. A.
Leguy
,
P. R. F.
Barnes
, and
A.
Walsh
, “
Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide
,”
Phys. Rev. B
92
(
14
),
144308
(
2015
).
33.
A. M. A.
Leguy
,
A. R.
Goñi
,
J. M.
Frost
,
J.
Skelton
,
F.
Brivio
,
X.
Rodríguez-Martínez
,
O. J.
Weber
,
A.
Pallipurath
,
M. I.
Alonso
,
M.
Campoy-Quiles
,
M. T.
Weller
,
J.
Nelson
,
A.
Walsh
, and
P. R. F.
Barnes
, “
Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites
,”
Phys. Chem. Chem. Phys.
18
(
39
),
27051
27066
(
2016
).
34.
M. A.
Pérez-Osorio
,
Q.
Lin
,
R. T.
Phillips
,
R. L.
Milot
,
L. M.
Herz
,
M. B.
Johnston
, and
F.
Giustino
, “
Raman spectrum of the organic–inorganic halide perovskite CH3NH3PbI3 from first principles and high-resolution low-temperature Raman measurements
,”
J. Phys. Chem. C
122
(
38
),
21703
21717
(
2018
).
35.
Y.
Guo
,
O.
Yaffe
,
T. D.
Hull
,
J. S.
Owen
,
D. R.
Reichman
, and
L. E.
Brus
, “
Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites
,”
Nat. Commun.
10
(
1
),
1175
(
2019
).
36.
H.
Seiler
,
S.
Palato
,
C.
Sonnichsen
,
H.
Baker
,
E.
Socie
,
D. P.
Strandell
, and
P.
Kambhampati
, “
Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals
,”
Nat. Commun.
10
(
1
),
4962
(
2019
).
37.
L. M.
Herz
, “
Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits
,”
ACS Energy Lett.
2
(
7
),
1539
1548
(
2017
).
38.
A.
Maalej
,
Y.
Abid
,
A.
Kallel
,
A.
Daoud
,
A.
Lautié
, and
F.
Romain
, “
Phase transitions and crystal dynamics in the cubic perovskite CH3NH3PbCl3
,”
Solid State Commun.
103
(
5
),
279
284
(
1997
).
39.
Y.
Guo
,
O.
Yaffe
,
D. W.
Paley
,
A. N.
Beecher
,
T. D.
Hull
,
G.
Szpak
,
J. S.
Owen
,
L. E.
Brus
, and
M. A.
Pimenta
, “
Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3
,”
Phys. Rev. Mater.
1
(
4
),
042401
(
2017
).
40.
C. M.
Iaru
,
A.
Brodu
,
N. J. J.
van Hoof
,
S. E. T.
ter Huurne
,
J.
Buhot
,
F.
Montanarella
,
S.
Buhbut
,
P. C. M.
Christianen
,
D.
Vanmaekelbergh
,
C.
de Mello Donega
,
J. G.
Rivas
,
P. M.
Koenraad
, and
A. Y.
Silov
, “
Fröhlich interaction dominated by a single phonon mode in CsPbBr3
,”
Nat. Commun.
12
(
1
),
5844
(
2021
).
41.
H.
Richter
,
Z. P.
Wang
, and
L.
Ley
, “
The one phonon Raman spectrum in microcrystalline silicon
,”
Solid State Commun.
39
(
5
),
625
629
(
1981
).
42.
X. S.
Zhao
,
Y. R.
Ge
,
J.
Schroeder
, and
P. D.
Persans
, “
Carrier-induced strain effect in Si and GaAs nanocrystals
,”
Appl. Phys. Lett.
65
(
16
),
2033
2035
(
1994
).
43.
T.
Kanata
,
H.
Murai
, and
K.
Kubota
, “
Raman and x-ray scattering from ultrafine semiconductor particles
,”
J. Appl. Phys.
61
(
3
),
969
971
(
1987
).
44.
G. L.
Frey
,
R.
Tenne
,
M. J.
Matthews
,
M. S.
Dresselhaus
, and
G.
Dresselhaus
, “
Raman and resonance Raman investigation of MoS2 nanoparticles
,”
Phys. Rev. B
60
(
4
),
2883
2892
(
1999
).
45.
A. N.
Beecher
,
R. A.
Dziatko
,
M. L.
Steigerwald
,
J. S.
Owen
, and
A. C.
Crowther
, “
Transition from molecular vibrations to phonons in atomically precise cadmium selenide quantum dots
,”
J. Am. Chem. Soc.
138
(
51
),
16754
16763
(
2016
).
You do not currently have access to this content.