We develop a quasiparticle approach to capture the dynamics of open quantum systems coupled to bosonic thermal baths of arbitrary complexity based on the Hierarchical Equations of Motion (HEOM). This is done by generalizing the HEOM dynamics and mapping it into that of the system in interaction with a few bosonic fictitious quasiparticles that we call bexcitons. Bexcitons arise from a decomposition of the bath correlation function into discrete features. Specifically, bexciton creation and annihilation couple the auxiliary density matrices in the HEOM. The approach provides a systematic strategy to construct exact quantum master equations that include the system–bath coupling to all orders even for non-Markovian environments. Specifically, by introducing different metrics and representations for the bexcitons it is possible to straightforwardly generate different variants of the HEOM, demonstrating that all these variants share a common underlying quasiparticle picture. Bexcitonic properties, while unphysical, offer a coarse-grained view of the correlated system–bath dynamics and its numerical convergence. For instance, we use it to analyze the instability of the HEOM when the bath is composed of underdamped oscillators and show that it leads to the creation of highly excited bexcitons. The bexcitonic picture can also be used to develop more efficient approaches to propagate the HEOM. As an example, we use the particle-like nature of the bexcitons to introduce mode-combination of bexcitons in both number and coordinate representation that uses the multi-configuration time-dependent Hartree to efficiently propagate the HEOM dynamics.

1.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2002
).
2.
M.
Schlosshauer
,
Decoherence and the Quantum-To-Classical Transition
(
Springer-Verlag GmbH
,
2007
).
3.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2011
).
4.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley VCH Verlag GmbH
,
2011
).
5.
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
6.
M.
Cygorek
,
M.
Cosacchi
,
A.
Vagov
,
V. M.
Axt
,
B. W.
Lovett
,
J.
Keeling
, and
E. M.
Gauger
,
Nat. Phys.
18
,
662
(
2022
).
7.
G. T.
Landi
,
D.
Poletti
, and
G.
Schaller
,
Rev. Mod. Phys.
94
,
045006
(
2022
).
8.
W.
Popp
,
M.
Polkehn
,
R.
Binder
, and
I.
Burghardt
,
J. Phys. Chem. Lett.
10
,
3326
(
2019
).
9.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathofer
,
T. L. C.
Jansen
,
T.
Mancal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H.-S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
,
Sci. Adv.
6
,
eaaz4888
(
2020
).
10.
C. P.
Koch
,
J. Phys.: Condens. Matter
28
,
213001
(
2016
).
11.
C. P.
Koch
,
U.
Boscain
,
T.
Calarco
,
G.
Dirr
,
S.
Filipp
,
S. J.
Glaser
,
R.
Kosloff
,
S.
Montangero
,
T.
Schulte-Herbrüggen
,
D.
Sugny
, and
F. K.
Wilhelm
,
EPJ Quantum Technol.
9
,
19
(
2022
).
13.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
14.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
15.
I.
de Vega
,
U.
Schollwock
, and
F. A.
Wolf
,
Phys. Rev. B
92
,
155126
(
2015
).
16.
A.
Strathearn
,
P.
Kirton
,
D.
Kilda
,
J.
Keeling
, and
B. W.
Lovett
,
Nat. Commun.
9
,
3322
(
2018
).
17.
N.
Lambert
,
S.
Ahmed
,
M.
Cirio
, and
F.
Nori
,
Nat. Commun.
10
,
3721
(
2019
).
18.
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
123
,
090402
(
2019
).
19.
C. W.
Kim
and
I.
Franco
,
J. Chem. Phys.
154
,
084109
(
2021
).
20.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
21.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
22.
A. O.
Caldeira
,
A. H.
CastroNeto
, and
T.
Oliveira de Carvalho
,
Phys. Rev. B
48
,
13974
(
1993
).
23.
A.
Suárez
and
R.
Silbey
,
J. Chem. Phys.
95
,
9115
(
1991
).
24.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
25.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
84105
(
2009
).
26.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
27.
T.
Ikeda
and
G. D.
Scholes
,
J. Chem. Phys.
152
,
204101
(
2020
).
28.
H.
Liu
,
L.
Zhu
,
S.
Bai
, and
Q.
Shi
,
J. Chem. Phys.
140
,
134106
(
2014
).
29.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
30.
C.
Schinabeck
,
A.
Erpenbeck
,
R.
Härtle
, and
M.
Thoss
,
Phys. Rev. B
94
,
201407
(
2016
).
31.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
32.
A. G.
Redfield
,
Advances in Magnetic Resonance
,
Advances in Magnetic and Optical Resonance
(
Academic Press
,
1965
), Vol.
1
, pp.
1
32
.
33.
D. A.
Lidar
, arXiv:1902.00967 (
2019
).
34.
Z.
Tang
,
X.
Ouyang
,
Z.
Gong
,
H.
Wang
, and
J.
Wu
,
J. Chem. Phys.
143
,
224112
(
2015
).
35.
M.
Xu
,
Y.
Yan
,
Q.
Shi
,
J.
Ankerhold
, and
J. T.
Stockburger
,
Phys. Rev. Lett.
129
,
230601
(
2022
).
36.
M.
Xu
,
V.
Vadimov
,
M.
Krug
,
J. T.
Stockburger
, and
J.
Ankerhold
, arXiv:2307.16790 (
2023
).
37.
T.
Ikeda
and
A.
Nakayama
,
J. Chem. Phys.
156
,
104104
(
2022
).
38.
K.
Nakamura
and
Y.
Tanimura
,
Phys. Rev. A
98
,
012109
(
2018
).
39.
M.
Tokieda
and
K.
Hagino
,
Ann. Phys.
412
,
168005
(
2020
).
40.
H. B.
Callen
and
T. A.
Welton
,
Phys. Rev.
83
,
34
(
1951
).
41.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
133
,
101106
(
2010
).
42.
X.
Zheng
,
J.
Jin
,
S.
Welack
,
M.
Luo
, and
Y.
Yan
,
J. Chem. Phys.
130
,
164708
(
2009
).
43.
L.
Cui
,
H.-D.
Zhang
,
X.
Zheng
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
151
,
024110
(
2019
).
44.
H.-D.
Zhang
,
L.
Cui
,
H.
Gong
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
152
,
064107
(
2020
).
45.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
,
Oxford Series in Optical and Imaging Sciences
(
Oxford University Press
,
1995
).
46.
I.
Gustin
,
C. W.
Kim
,
D. W.
McCamant
, and
I.
Franco
,
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2309987120
(
2023
).
47.
C. W.
Kim
,
J. M.
Nichol
,
A. N.
Jordan
, and
I.
Franco
,
PRX Quantum
3
,
040308
(
2022
).
48.
A. O.
Caldeira
and
A. J.
Leggett
,
Phys. Rev. Lett.
46
,
211
(
1981
).
49.
H.
Grabert
,
P.
Schramm
, and
G.-L.
Ingold
,
Phys. Rep.
168
,
115
(
1988
).
50.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
,
J. Chem. Phys.
83
,
4491
(
1985
).
51.
Y.
Yan
,
J. Chem. Phys.
140
,
054105
(
2014
).
52.
X.
Li
,
Y.
Su
,
Z.-H.
Chen
,
Y.
Wang
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
158
,
214110
(
2023
).
53.
R.-X.
Xu
,
Y.
Liu
,
H.-D.
Zhang
, and
Y.
Yan
,
J. Chem. Phys.
148
,
114103
(
2018
).
54.
N.
Anto-Sztrikacs
,
A.
Nazir
, and
D.
Segal
,
PRX Quantum
4
,
020307
(
2023
).
55.
A. D.
Somoza
,
O.
Marty
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
123
,
100502
(
2019
).
56.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
1991
(
1992
).
57.
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
,
J. Chem. Phys.
43
,
1515
(
1965
).
58.
R. G.
Littlejohn
,
M.
Cargo
,
T.
Carrington
,
K. A.
Mitchell
, and
B.
Poirier
,
J. Chem. Phys.
116
,
8691
(
2002
).
59.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Köpf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,” in
Advances in Neural Information Processing Systems
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’ Alché-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
), Vol. 32 (
2019
), https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
60.
X.
Chen
and
I.
Franco
, “
BEX: A general python package to simulate open quantum systems
,” https://github.com/vINyLogY/bex.
61.
T.
Sayer
and
A.
Montoya-Castillo
,
J. Chem. Phys.
158
,
014105
(
2023
).
62.
B.
Gu
and
I.
Franco
,
J. Phys. Chem. Lett.
8
,
4289
(
2017
).
63.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
,
J. Chem. Phys.
150
,
184109
(
2019
).
64.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
,
J. Chem. Phys.
153
,
204109
(
2020
).
65.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
66.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
67.
Y.
Yan
,
M.
Xu
,
T.
Li
, and
Q.
Shi
,
J. Chem. Phys.
154
,
194104
(
2021
).
68.
Y.
Ke
,
J. Chem. Phys.
158
,
211102
(
2023
).
69.
H.-D.
Meyer
and
H.
Wang
,
J. Chem. Phys.
148
,
124105
(
2018
).
70.
H.
Wang
and
H.-D.
Meyer
,
J. Chem. Phys.
149
,
044119
(
2018
).
You do not currently have access to this content.