The sluggish oxygen evolution reaction (OER) in overall electrocatalytic water splitting poses a significant challenge in hydrogen production. A series of transition metal phosphides are emerging as promising electrocatalysts, effectively modulating the charge distribution of surrounding atoms for OER. In this study, a highly efficient OER electrocatalyst (CoP-CNR-CNT) was successfully synthesized through the pyrolysis and phosphatization of a Co-doped In-based coordination polymer, specifically InOF-25. This process resulted in evenly dispersed CoP nanoparticles encapsulated in coordination polymer-derived carbon nanoribbons. The synthesized CoP-CNR-CNT demonstrated a competitive OER activity with a smaller overpotential (η10) of 295.7 mV at 10 mA cm-2 and a satisfactory long-term stability compared to the state-of-the-art RuO210 = 353.7 mV). The high OER activity and stability can be attributed to the high conductivity of the carbon network, the abundance of CoP particles, and the intricate nanostructure of nanoribbons/nanotubes. This work provides valuable insights into the rational design and facile preparation of efficient non-precious metal-based OER electrocatalysts from inorganic–organic coordination polymers, with potential applications in various energy conversion and storage systems.

1.
Q.
Li
,
Q.
Zhang
,
W.
Xu
et al, “
Sowing single atom seeds: A versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction
,”
Adv. Energy Mater.
13
,
2203955
(
2023
).
2.
K. H.
Liu
,
H. X.
Zhong
,
S. J.
Li
et al, “
Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions
,”
Prog. Mater. Sci.
92
,
64
111
(
2018
).
3.
D. P.
Sahoo
,
K. K.
Das
,
S.
Mansingh
et al, “
Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis
,”
Coord. Chem. Rev.
469
,
214666
(
2022
).
4.
M.
Batool
,
A.
Hameed
, and
M. A.
Nadeem
, “
Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review
,”
Coord. Chem. Rev.
480
,
215029
(
2023
).
5.
P.
Zhou
,
I. A.
Navid
,
Y.
Ma
et al, “
Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting
,”
Nature
613
,
66
70
(
2023
).
6.
C. X.
Zhao
,
J. N.
Liu
,
J.
Wang
et al, “
Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts
,”
Chem. Soc. Rev.
50
,
7745
7778
(
2021
).
7.
L.
Zhong
,
L.
He
,
N.
Wang
et al, “
Preparation of metal-organic framework from in situ self-sacrificial stainless-steel matrix for efficient water oxidation
,”
Appl. Catal., B
325
,
122343
(
2023
).
8.
X.
Wang
,
H.
Huang
,
J.
Qian
et al, “
Intensified Kirkendall effect assisted construction of double-shell hollow Cu-doped CoP nanoparticles anchored by carbon arrays for water splitting
,”
Appl. Catal., B
325
,
122295
(
2023
).
9.
Y.
Guo
,
Q.
Huang
,
J.
Ding
et al, “
CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance
,”
Int. J. Hydrogen Energy
46
,
22268
22276
(
2021
).
10.
O. M.
Yaghi
, “
Evolution of MOF single crystals
,”
Chem
8
,
1541
1543
(
2022
).
11.
M. L.
Hu
,
M. Y.
Masoomi
, and
A.
Morsali
, “
Template strategies with MOFs
,”
Coord. Chem. Rev.
387
,
415
435
(
2019
).
12.
W.
Fan
,
X.
Zhang
,
Z.
Kang
et al, “
Isoreticular chemistry within metal-organic frameworks for gas storage and separation
,”
Coord. Chem. Rev.
443
,
213968
(
2021
).
13.
P. M.
Bhatt
,
V.
Guillerm
,
S. J.
Datta
et al, “
Topology meets reticular chemistry for chemical separations: MOFs as a case study
,”
Chem
6
,
1613
1633
(
2020
).
14.
T. N.
Tu
,
M. V.
Nguyen
,
H. L.
Nguyen
et al, “
Designing bipyridine-functionalized zirconium metal-organic frameworks as a platform for clean energy and other emerging applications
,”
Coord. Chem. Rev.
364
,
33
50
(
2018
).
15.
B.
Zhu
,
D.
Wen
,
Z.
Liang
, and
R.
Zou
, “
Conductive metal-organic frameworks for electrochemical energy conversion and storage
,”
Coord. Chem. Rev.
446
,
214119
(
2021
).
16.
D.
Chen
,
Q.
Sun
,
C.
Han
et al, “
Enhanced oxygen evolution catalyzed by in situ formed Fe-doped Ni oxyhydroxides in carbon nanotubes
,”
J. Mater. Chem. A
10
,
16007
16015
(
2022
).
17.
Q.
Huang
,
Y.
Guo
,
X.
Wang
et al, “
In-MOF-derived ultrathin heteroatom-doped carbon nanosheets for improving oxygen reduction
,”
Nanoscale
12
,
10019
10025
(
2020
).
18.
H. F.
Wang
,
L.
Chen
,
H.
Pang
et al, “
MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions
,”
Chem. Soc. Rev.
49
,
1414
1448
(
2020
).
19.
Y.
Shi
,
B.
Zhu
,
X.
Guo
et al, “
MOF-derived metal sulfides for electrochemical energy applications
,”
Energy Storage Mater.
51
,
840
872
(
2022
).
20.
L.
Mao
,
D.
Chen
,
Y.
Guo
et al, “
Different growth behavior of MOF-on-MOF heterostructures to enhance oxygen evolution
,”
ChemSusChem
16
,
e202201947
(
2022
).
21.
L.
Chai
,
Z.
Hu
,
X.
Wang
et al, “
Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting
,”
Adv. Sci.
7
,
1903195
(
2020
).
22.
L.
Chai
,
L.
Zhang
,
X.
Wang
et al, “
Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance
,”
Carbon
146
,
248
256
(
2019
).
23.
J.
Zhan
,
X.
Cao
,
J.
Zhou
et al, “
Porous array with CoP nanoparticle modification derived from MOF grown on carbon cloth for effective alkaline hydrogen evolution
,”
Chem. Eng. J.
416
,
128943
(
2021
).
24.
W.
Gao
,
Y.
Wan
,
Y.
Dou
, and
D.
Zhao
, “
Synthesis of partially graphitic ordered mesoporous carbons with high surface areas
,”
Adv. Energy Mater.
1
,
115
123
(
2011
).
25.
F.
Zhou
,
R.
Wang
,
S.
He
et al, “
Defect-rich hierarchical porous Mn-doped CoP hollow microspheres accelerate polysulfide conversion
,”
Adv. Funct. Mater.
33
,
2211124
(
2022
).
26.
A.
Kaushal
,
R.
Alexander
,
D.
Mandal
et al, “
Remarkable enhancement in CNT fiber synthesis by reducing convection vortex in floating catalyst chemical vapour deposition
,”
Chem. Eng. J.
452
,
139142
(
2023
).
27.
C. F.
Li
,
J. W.
Zhao
,
L.
Xie
et al, “
Water adsorption and dissociation promoted by Co*-/N-C*-biactive sites of metallic Co/N-doped carbon hybrids for efficient hydrogen evolution
,”
Appl. Catal., B
282
,
119463
(
2021
).
28.
Y.
Hao
,
Y.
Xu
,
W.
Liu
, and
X.
Sun
, “
Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst
,”
Mater. Horiz.
5
,
108
115
(
2018
).
29.
X.
Zhang
,
L.
Song
,
L.
Tong
et al, “
Surface bonding of CoP to biomass derived carbon microtube: Site-specific growth and high-efficiency catalysis
,”
Chem. Eng. J.
440
,
135884
(
2022
).
30.
X.
Wang
,
L.
Chai
,
J.
Ding
et al, “
Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution
,”
Nano Energy
62
,
745
753
(
2019
).
31.
H.
Jiang
,
Y.
Zhou
,
C.
Guan
et al, “
Ion/electron redistributed 3D flexible host for achieving highly reversible Li metal batteries
,”
Small
18
,
2107641
(
2022
).
32.
J.
Kang
,
F.
Yang
,
C.
Sheng
et al, “
CoP nanoparticle confined in P, N Co-doped porous carbon anchored on P-doped carbonized wood fibers with tailored electronic structure for efficient urea electro-oxidation
,”
Small
18
,
2200950
(
2022
).
33.
H.
Song
,
J.
Yu
,
Z.
Tang
et al, “
Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting
,”
Adv. Energy Mater.
12
,
2102573
(
2022
).
34.
X.
Wang
,
A.
Dong
,
Y.
Hu
et al, “
A review of recent work on using metal–organic frameworks to grow carbon nanotubes
,”
Chem. Commun.
56
,
10809
10823
(
2020
).
35.
X.
Wang
,
Z.
Qin
,
J.
Qian
et al, “
IrCo nanoparticles encapsulated with carbon nanotubes for efficient and stable acidic water splitting
,”
ACS Catal.
13
(
16
),
10672
10682
(
2023
).

Supplementary Material

You do not currently have access to this content.