Organic molecular solids can exhibit rich phase diagrams. In addition to structurally unique phases, translational and rotational degrees of freedom can melt at different state points, giving rise to partially disordered solid phases. The structural and dynamic disorder in these materials can have a significant impact on the physical properties of the organic solid, necessitating a thorough understanding of disorder at the atomic scale. When these disordered phases form at low temperatures, especially in crystals with light nuclei, the prediction of material properties can be complicated by the importance of nuclear quantum effects. As an example, we investigate nuclear quantum effects on the structure and dynamics of the orientationally disordered, translationally ordered plastic phase of the acetylene:ammonia (1:1) co-crystal that is expected to exist on the surface of Saturn’s moon Titan. Titan’s low surface temperature (∼90 K) suggests that the quantum mechanical behavior of nuclei may be important in this and other molecular solids in these environments. By using neural network potentials combined with ring polymer molecular dynamics simulations, we show that nuclear quantum effects increase orientational disorder and rotational dynamics within the acetylene:ammonia (1:1) co-crystal by weakening hydrogen bonds. Our results suggest that nuclear quantum effects are important to accurately model molecular solids and their physical properties in low-temperature environments.

1.
G. J.
Beran
, “
Modeling polymorphic molecular crystals with electronic structure theory
,”
Chem. Rev.
116
,
5567
5613
(
2016
).
2.
S.
Kumar
and
A.
Nanda
, “
Approaches to design of pharmaceutical cocrystals: A review
,”
Mol. Cryst. Liq. Cryst.
667
,
54
77
(
2018
).
3.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
, “
Charge transport in organic semiconductors
,”
Chem. Rev.
107
,
926
952
(
2007
).
4.
Z.
Zhang
,
R. C.
Remsing
,
H.
Chakraborty
,
W.
Gao
,
G.
Yuan
,
M. L.
Klein
, and
S.
Ren
, “
Light-induced dilation in nanosheets of charge-transfer complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
3776
3781
(
2018
).
5.
H.
Bronstein
,
C. B.
Nielsen
,
B. C.
Schroeder
, and
I.
McCulloch
, “
The role of chemical design in the performance of organic semiconductors
,”
Nat. Rev. Chem
4
,
66
77
(
2020
).
6.
B.
Hirshberg
,
R. B.
Gerber
, and
A. I.
Krylov
, “
Calculations predict a stable molecular crystal of N8
,”
Nat. Chem.
6
,
52
56
(
2014
).
7.
H.
Zhang
,
Y.
Fang
,
F.
Yang
,
X.
Liu
, and
X.
Lu
, “
Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage
,”
Energy Environ. Sci.
13
,
2515
2523
(
2020
).
8.
S.
Liu
,
L.
Zhao
,
M.
Yao
,
M.
Miao
, and
B.
Liu
, “
Novel all-nitrogen molecular crystals of aromatic N10
,”
Adv. Sci.
7
,
1902320
(
2020
).
9.
X.
Zhu
,
C. T.
Hu
,
B.
Erriah
,
L.
Vogt-Maranto
,
J.
Yang
,
Y.
Yang
,
M.
Qiu
,
N.
Fellah
,
M. E.
Tuckerman
,
M. D.
Ward
, and
B.
Kahr
, “
Imidacloprid crystal polymorphs for disease vector control and pollinator protection
,”
J. Am. Chem. Soc.
143
,
17144
17152
(
2021
).
10.
A. C.
Thakur
and
R. C.
Remsing
, “
Molecular structure, dynamics, and vibrational spectroscopy of the acetylene:ammonia (1:1) plastic co-crystal at Titan conditions
,”
ACS Earth Space Chem.
7
,
479
489
(
2023
).
11.
E. C.
Czaplinski
,
T. H.
Vu
,
M. L.
Cable
,
M.
Choukroun
,
M. J.
Malaska
, and
R.
Hodyss
, “
Experimental characterization of the pyridine:acetylene co-crystal and implications for Titan’s surface
,”
ACS Earth Space Chem.
7
,
597
608
(
2023
).
12.
M. L.
Cable
,
T.
Runčevski
,
H. E.
Maynard-Casely
,
T. H.
Vu
, and
R.
Hodyss
, “
Titan in a test tube: Organic co-crystals and implications for Titan mineralogy
,”
Acc. Chem. Res.
54
,
3050
3059
(
2021
).
13.
H. E.
Maynard-Casely
,
M. L.
Cable
,
M. J.
Malaska
,
T. H.
Vu
,
M.
Choukroun
, and
R.
Hodyss
, “
Prospects for mineralogy on Titan
,”
Am. Mineral.
103
,
343
349
(
2018
).
14.
H. E.
Maynard-Casely
,
R.
Hodyss
,
M. L.
Cable
,
T. H.
Vu
, and
M.
Rahm
, “
A co-crystal between benzene and ethane: A potential evaporite material for Saturn’s moon Titan
,”
IUCrJ
3
,
192
199
(
2016
).
15.
M. T.
Kirchner
,
D.
Bläser
, and
R.
Boese
, “
Co‐crystals with acetylene: Small is not simple!
,”
Chem. - Eur. J.
16
,
2131
2146
(
2010
).
16.
L.
Sun
,
Y.
Wang
,
F.
Yang
,
X.
Zhang
, and
W.
Hu
, “
Cocrystal engineering: A collaborative strategy toward functional materials
,”
Adv. Mater.
31
,
1902328
(
2019
).
17.
S.
Karki
,
T.
Friščić
,
L.
Fábián
,
P. R.
Laity
,
G. M.
Day
, and
W.
Jones
, “
Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol
,”
Adv. Mater.
21
,
3905
3909
(
2009
).
18.
X.-L.
Dai
,
J.-M.
Chen
, and
T.-B.
Lu
, “
Pharmaceutical cocrystallization: An effective approach to modulate the physicochemical properties of solid-state drugs
,”
CrystEngComm
20
,
5292
5316
(
2018
).
19.
M. L.
Klein
and
L. J.
Lewis
, “
Simulation of dynamical processes in molecular solids
,”
Chem. Rev.
90
,
459
479
(
1990
).
20.
M. L.
Klein
, “
Computer simulation studies of solids
,”
Annu. Rev. Phys. Chem.
36
,
525
548
(
1985
).
21.
D. G.
Bounds
,
M. L.
Klein
, and
G.
Patey
, “
Molecular dynamics simulation of the plastic phase of solid methane
,”
J. Chem. Phys.
72
,
5348
5356
(
1980
).
22.
S.
Nosé
and
M. L.
Klein
, “
Structural transformations in solid nitrogen at high pressure
,”
Phys. Rev. Lett.
50
,
1207
(
1983
).
23.
R.
Lynden-Bell
and
K.
Michel
, “
Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals
,”
Rev. Mod. Phys.
66
,
721
(
1994
).
24.
M. L.
Cable
,
T. H.
Vu
,
M. J.
Malaska
,
H. E.
Maynard-Casely
,
M.
Choukroun
, and
R.
Hodyss
, “
A co-crystal between acetylene and butane: A potentially ubiquitous molecular mineral on Titan
,”
ACS Earth Space Chem.
3
,
2808
2815
(
2019
).
25.
M. L.
Cable
,
T. H.
Vu
,
H. E.
Maynard-Casely
,
M.
Choukroun
, and
R.
Hodyss
, “
The acetylene-ammonia co-crystal on Titan
,”
ACS Earth Space Chem.
2
,
366
375
(
2018
).
26.
M. L.
Cable
,
T. H.
Vu
,
M. J.
Malaska
,
H. E.
Maynard-Casely
,
M.
Choukroun
, and
R.
Hodyss
, “
Properties and behavior of the acetonitrile–acetylene co-crystal under Titan surface conditions
,”
ACS Earth Space Chem.
4
,
1375
1385
(
2020
).
27.
T. H.
Vu
,
M. L.
Cable
,
M.
Choukroun
,
R.
Hodyss
, and
P.
Beauchamp
, “
Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions
,”
J. Phys. Chem. A
118
,
4087
4094
(
2014
).
28.
T. H.
Vu
,
H. E.
Maynard-Casely
,
M. L.
Cable
,
M.
Choukroun
,
M. J.
Malaska
, and
R.
Hodyss
, “
1,3-butadiene on Titan: Crystal structure, thermal expansivity, and Raman signatures
,”
ACS Earth Space Chem.
6
,
2274
(
2022
).
29.
T. E.
Markland
and
M.
Ceriotti
, “
Nuclear quantum effects enter the mainstream
,”
Nat. Rev. Chem.
2
,
0109
(
2018
).
30.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
, “
Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges
,”
Chem. Rev.
116
,
7529
7550
(
2016
).
31.
R. C.
Remsing
, “
Modeling nuclear quantum effects on long-range electrostatics in nonuniform fluids
,”
Chem. Phys
159
,
234101
(
2023
).
32.
M.
Rossi
,
P.
Gasparotto
, and
M.
Ceriotti
, “
Anharmonic and quantum fluctuations in molecular crystals: A first-principles study of the stability of paracetamol
,”
Phys. Rev. Lett.
117
,
115702
(
2016
).
33.
V.
Kapil
and
E. A.
Engel
, “
A complete description of thermodynamic stabilities of molecular crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2111769119
(
2022
).
34.
H.-Y.
Ko
,
R. A.
DiStasio
, Jr.
,
B.
Santra
, and
R.
Car
, “
Thermal expansion in dispersion-bound molecular crystals
,”
Phys. Rev. Mater.
2
,
055603
(
2018
).
35.
I.
De Pater
and
J. J.
Lissauer
,
Planetary Sciences
(
Cambridge University Press
,
2015
).
36.
B.
Li
,
Y.
Kawakita
,
S.
Ohira-Kawamura
,
T.
Sugahara
,
H.
Wang
,
J.
Wang
,
Y.
Chen
,
S. I.
Kawaguchi
,
S.
Kawaguchi
,
K.
Ohara
et al, “
Colossal barocaloric effects in plastic crystals
,”
Nature
567
,
506
510
(
2019
).
37.
C. L.
Guerrero
,
S.
Cuesta-Lopez
, and
J. M.
Perlado
, “
Ab initio molecular dynamics: Relationship between structural phases and the sound velocity in dense hydrogen
,”
Europhys. Lett.
108
,
26001
(
2014
).
38.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
et al, “
LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
39.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
40.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
41.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
42.
J.
VandeVondele
and
J.
Hutter
, “
An efficient orbital transformation method for electronic structure calculations
,”
J. Chem. Phys.
118
,
4365
4369
(
2003
).
43.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and
W.
E
, “
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
,” in
Advances in Neural Information Processing Systems
, edited by
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
(
Curran Associates, Inc.
,
2018
), Vol.
31
.
44.
D.
Lu
,
H.
Wang
,
M.
Chen
,
L.
Lin
,
R.
Car
,
E.
Weinan
,
W.
Jia
, and
L.
Zhang
, “
86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy
,”
Comput. Phys. Commun.
259
,
107624
(
2021
).
45.
J.
Zeng
,
D.
Zhang
,
D.
Lu
,
P.
Mo
,
Z.
Li
,
Y.
Chen
,
M.
Rynik
,
L.
Huang
,
Z.
Li
,
S.
Shi
et al, “
DeePMD-kit v2: A software package for deep potential models
,”
J. Chem. Phys.
159
,
054801
(
2023
).
46.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
E.
Weinan
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
47.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
50.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
51.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
52.
C.
Hartwigsen
,
S.
Gœdecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
53.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
54.
R.
Boese
,
D.
Bläser
, and
G.
Jansen
, “
Synthesis and theoretical characterization of an acetylene-ammonia cocrystal
,”
J. Am. Chem. Soc.
131
,
2104
2106
(
2009
).
55.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
56.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
57.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
58.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
59.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
et al, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
60.
F.
Uhl
,
D.
Marx
, and
M.
Ceriotti
, “
Accelerated path integral methods for atomistic simulations at ultra-low temperatures
,”
J. Chem. Phys.
145
,
054101
(
2016
).
61.
R.
Korol
,
N.
Bou-Rabee
, and
T. F.
Miller
, “
Cayley modification for strongly stable path-integral and ring-polymer molecular dynamics
,”
J. Chem. Phys.
151
,
124103
(
2019
).
62.
J. L.
Rosa-Raíces
,
J.
Sun
,
N.
Bou-Rabee
, and
T. F.
Miller
, “
A generalized class of strongly stable and dimension-free T-RPMD integrators
,”
J. Chem. Phys.
154
,
024106
(
2021
).
63.
R.
Korol
,
J. L.
Rosa-Raíces
,
N.
Bou-Rabee
, and
T. F.
Miller
, “
Dimension-free path-integral molecular dynamics without preconditioning
,”
J. Chem. Phys.
152
,
104102
(
2020
).
64.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
, “
How to remove the spurious resonances from ring polymer molecular dynamics
,”
J. Chem. Phys.
140
,
234116
(
2014
).
65.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
3373
(
2004
).
66.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
, “
Isothermal-isobaric molecular dynamics using stochastic velocity rescaling
,”
J. Chem. Phys.
130
,
074101
(
2009
).
67.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
III
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
,
387
413
(
2013
).
68.
T. F.
Miller
and
D. E.
Manolopoulos
, “
Quantum diffusion in liquid water from ring polymer molecular dynamics
,”
J. Chem. Phys.
123
,
154504
(
2005
).
69.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier Ltd.
,
2006
).
70.
A. C.
Thakur
and
R. C.
Remsing
, “
Distributed charge models of liquid methane and ethane for dielectric effects and solvation
,”
Mol. Phys.
119
,
e1933228
(
2021
).
71.
R.
Gordon
, “
Molecular motion in infrared and Raman spectra
,”
J. Chem. Phys.
43
,
1307
1312
(
1965
).
72.
R.
Gordon
, “
Relations between Raman spectroscopy and nuclear spin relaxation
,”
J. Chem. Phys.
42
,
3658
3665
(
1965
).
73.
D. M.
Wilkins
,
D. E.
Manolopoulos
,
S.
Pipolo
,
D.
Laage
, and
J. T.
Hynes
, “
Nuclear quantum effects in water reorientation and hydrogen-bond dynamics
,”
J. Phys. Chem. Lett.
8
,
2602
2607
(
2017
).
74.
A.
Luzar
and
D.
Chandler
, “
Effect of environment on hydrogen bond dynamics in liquid water
,”
Phys. Rev. Lett.
76
,
928
(
1996
).
75.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
,
55
57
(
1996
).
76.
A.
Luzar
, “
Resolving the hydrogen bond dynamics conundrum
,”
J. Chem. Phys.
113
,
10663
10675
(
2000
).
77.
R.
Kumar
,
J.
Schmidt
, and
J.
Skinner
, “
Hydrogen bonding definitions and dynamics in liquid water
,”
J. Chem. Phys.
126
,
204107
(
2007
).
78.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
79.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
D. L.
Dotson
,
J.
Domanski
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference
(SciPy), Austin, TX, 11–17 July 2016, pp.
98
105
. DOI: 10.25080/majora-629e541a-00e.
80.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
81.
T.
Todorova
,
A. P.
Seitsonen
,
J.
Hutter
,
I.-F. W.
Kuo
, and
C. J.
Mundy
, “
Molecular dynamics simulation of liquid water: Hybrid density functionals
,”
J. Phys. Chem. B
110
,
3685
3691
(
2006
).
82.
H.
Xu
,
H. A.
Stern
, and
B.
Berne
, “
Can water polarizability be ignored in hydrogen bond kinetics?
,”
J. Phys. Chem. B
106
,
2054
2060
(
2002
).
83.
E.
Schwegler
,
G.
Galli
, and
F.
Gygi
, “
Water under pressure
,”
Phys. Rev. Lett.
84
,
2429
(
2000
).
84.
P. H.-L.
Sit
and
N.
Marzari
, “
Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics
,”
J. Chem. Phys.
122
,
204510
(
2005
).
85.
T. C.
Preston
and
R.
Signorell
, “
The formation and stability of co-crystalline NH3 · C2H2 aerosol particles
,”
Mol. Phys.
110
,
2807
2815
(
2012
).
86.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Competing quantum effects in the dynamics of a flexible water model
,”
J. Chem. Phys.
131
,
024501
(
2009
).
87.
F.
Paesani
,
W.
Zhang
,
D. A.
Case
,
T. E.
Cheatham
, and
G. A.
Voth
, “
An accurate and simple quantum model for liquid water
,”
J. Chem. Phys.
125
,
184507
(
2006
).
88.
F.
Paesani
,
S.
Iuchi
, and
G. A.
Voth
, “
Quantum effects in liquid water from an ab initio-based polarizable force field
,”
J. Chem. Phys.
127
,
074506
(
2007
).
89.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).
90.
J.
Pagotto
,
J.
Zhang
, and
T.
Duignan
, “
Predicting the properties of salt water using neural network potentials and continuum solvent theory
,” chemRxiv doi: 10.26434/chemrxiv-2022-jndlx (
2022
).
91.
S.
Yue
,
M. C.
Muniz
,
M. F.
Calegari Andrade
,
L.
Zhang
,
R.
Car
, and
A. Z.
Panagiotopoulos
, “
When do short-range atomistic machine-learning models fall short?
,”
J. Chem. Phys.
154
,
034111
(
2021
).
92.
Y.
Zhai
,
A.
Caruso
,
S. L.
Bore
,
Z.
Luo
, and
F.
Paesani
, “
A ‘short blanket’ dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?
,”
J. Chem. Phys.
158
,
084111
(
2023
).
You do not currently have access to this content.