The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm−1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240–300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.

1.
E.
Albano
,
A.
Tomasi
,
L.
Goria-Gatti
,
G.
Poli
,
V.
Vannini
, and
M. U.
Dianzani
,
Free Radical Res. Commun.
3
(
1–5
),
243
249
(
1987
).
2.
E.
Albano
,
A.
Tomasi
,
L.
Goria-Gatti
, and
M. U.
Dianzani
,
Chem.-Biol. Interact.
65
,
223
234
(
1988
).
3.
L. A.
Reinke
,
Y.
Kotake
,
P. B.
McCay
, and
E. G.
Janzen
,
Free Radicals Biol. Med.
11
,
31
39
(
1991
).
4.
E.
Albano
,
P.
Clot
,
M.
Morimoto
,
A.
Tomasi
,
M.
Ingelman‐Sundberg
, and
S. W.
French
,
Hepatology
23
(
1
),
155
163
(
1996
).
5.
E.
Albano
,
S. W.
French
, and
M.
Ingelman-Sundberg
,
Front. Biosci.
(Landmark Ed.)
4
(
4
),
533
540
(
1999
).
6.
S.
Zakhari
,
Alcohol Res. Health
29
(
4
),
245
254
(
2006
).
7.
M.
Comporti
,
C.
Signorini
,
S.
Leoncini
,
C.
Gardi
,
L.
Ciccoli
,
A.
Giardini
,
D.
Vecchio
, and
B.
Arezzini
,
Genes Nutr.
5
(
2
),
101
109
(
2010
).
8.
P. B.
McCay
,
L. A.
Reinke
, and
J. M.
Rau
,
Free Radical Res. Commun.
15
(
6
),
335
346
(
1992
).
9.
G.
Ekström
and
M.
Ingelman-Sundberg
,
Biochem. Pharmacol.
38
(
8
),
1313
1319
(
1989
).
10.
I. R.
Crossley
,
J.
Neuberger
,
M.
Davis
,
R.
Williams
, and
A. L.
Eddleston
,
Gut
27
(
2
),
186
189
(
1986
).
11.
K. D.
Asmus
,
H.
Moeckel
, and
A.
Henglein
,
J. Phys. Chem.
77
(
10
),
1218
1221
(
1973
).
12.
G. R.
Freeman
, Radiation chemistry of ethanol: A review of data on yields, reaction rate parameters, and spectral properties of transients,
National Standard Reference Data System
,
1974
.
13.
D.
Jore
,
B.
Champion
,
N.
Kaouadji
,
J. P.
Jay-Gerin
, and
C.
Ferradini
,
Radiat. Phys. Chem.
32
(
3
),
443
448
(
1988
).
14.
I.
Sviben
,
I.
Džeba
,
M.
Bonifačić
, and
I.
Ljubić
,
Phys. Chem. Chem. Phys.
23
(
17
),
10429
10439
(
2021
).
15.
M.
Ingelman-Sundberg
and
I.
Johansson
,
J. Biol. Chem.
259
(
10
),
6447
6458
(
1984
).
16.
A. I.
Cederaum
,
Free Radicals Biol. Med.
7
(
5
),
559
567
(
1989
).
17.
C.
Anastasi
,
V.
Simpson
,
J.
Munk
, and
P.
Pagsberg
,
Chem. Phys. Lett.
164
(
1
),
18
22
(
1989
).
18.
B.
Karpichev
,
L. W.
Edwards
,
J.
Wei
, and
H.
Reisler
,
J. Phys. Chem. A
112
(
3
),
412
418
(
2008
).
19.
G.
da Silva
,
J. W.
Bozzelli
,
L.
Liang
, and
J. T.
Farrell
,
J. Phys. Chem. A
113
(
31
),
8923
8933
(
2009
).
20.
S. A.
Carr
,
M. A.
Blitz
, and
P. W.
Seakins
,
J. Phys. Chem. A
115
(
15
),
3335
3345
(
2011
).
21.
N.
Leplat
,
P.
Dagaut
,
C.
Togbé
, and
J.
Vandooren
,
Combust. Flame
158
(
4
),
705
725
(
2011
).
22.
J.
Zádor
,
C. A.
Taatjes
, and
R. X.
Fernandes
,
Prog. Energy Combust. Sci.
37
(
4
),
371
421
(
2011
).
23.
E. E.
Dames
,
Int. J. Chem. Kinet.
46
(
3
),
176
188
(
2014
).
24.
S. M.
Sarathy
,
P.
Oßwald
,
N.
Hansen
, and
K.
Kohse-Höinghaus
,
Prog. Energy Combust. Sci.
44
,
40
102
(
2014
).
25.
H.
Hashemi
,
J. M.
Christensen
, and
P.
Glarborg
,
Fuel
218
,
247
257
(
2018
).
26.
T.
Zhang
,
M.
Wen
,
Y.
Ju
,
J.
Kang
,
R.
Wang
,
J.
Cao
, and
S. K.
Roy
,
J. Phys. Org. Chem.
32
(
2
),
e3895
(
2019
).
27.
S.
Gligorovski
,
R.
Strekowski
,
S.
Barbati
, and
D.
Vione
,
Chem. Rev.
115
(
24
),
13051
13092
(
2015
).
28.
R.
Overend
and
G.
Paraskevopoulos
,
J. Phys. Chem.
82
(
12
),
1329
1333
(
1978
).
29.
R. L.
Hudson
and
M. H.
Moore
,
Astrophys. J.
857
(
2
),
89
(
2018
).
30.
P. V.
Zasimov
,
E. V.
Sanochkina
,
D. A.
Tyurin
, and
V. I.
Feldman
,
Phys. Chem. Chem. Phys.
25
(
6
),
4624
4634
(
2023
).
31.
P. V.
Zasimov
,
E. V.
Sanochkina
,
D. A.
Tyurin
, and
V. I.
Feldman
,
Phys. Chem. Chem. Phys.
25
(
33
),
21883
21896
(
2023
).
32.
I. A.
Taub
and
L. M.
Dorfman
,
J. Am. Chem. Soc.
84
(
21
),
4053
4059
(
1962
).
33.
M.
Simic
,
P.
Neta
, and
E.
Hayon
,
J. Phys. Chem.
73
(
11
),
3794
3800
(
1969
).
34.
J. W.
Fletcher
,
P. J.
Richards
, and
W. A.
Seddon
,
Can. J. Chem.
48
(
23
),
3765
3768
(
1970
).
35.
A.
Bernas
,
D.
Grand
, and
C.
Chachaty
,
J. Chem. Soc. D
1970
,
1667
1668
.
36.
R.
Livingston
and
H.
Zeldes
,
J. Chem. Phys.
44
(
3
),
1245
1259
(
1966
).
37.
R. S.
Zhu
,
J.
Park
, and
M. C.
Lin
,
Chem. Phys. Lett.
408
(
1–3
),
25
30
(
2005
).
38.
J. P.
Senosiain
,
S. J.
Klippenstein
, and
J. A.
Miller
,
J. Phys. Chem. A
110
(
21
),
6960
6970
(
2006
).
39.
Z. F.
Xu
,
K.
Xu
, and
M. C.
Lin
,
ChemPhysChem
10
(
6
),
972
982
(
2009
).
40.
A. E.
Williams
,
N. I.
Hammer
, and
G. S.
Tschumper
,
J. Chem. Phys.
155
(
11
),
114306
(
2021
).
41.
E.
Whittle
,
D. A.
Dows
, and
G. C.
Pimentel
,
J. Chem. Phys.
22
(
11
),
1943
(
1954
).
42.
V. I.
Feldman
,
Application of EPR in Radiation Research
, edited by
A.
Lund
and
M.
Shiotani
(
Springer
,
Cham
,
2014
), pp.
151
188
.
43.
T.
Bally
,
Reactive Intermediate Chemistry
, edited by
R. A.
Moss
,
M. S.
Platz
, and
M.
Jones
(
John Wiley & Sons, Inc.
,
Hoboken
,
2005
), pp.
795
845
.
44.
M. E.
Jacox
and
D. E.
Milligan
,
J. Mol. Spectrosc.
47
(
1
),
148
162
(
1973
).
45.
S. Y.
Chiang
,
Y. C.
Hsu
, and
Y.-P.
Lee
,
J. Chem. Phys.
90
(
1
),
81
86
(
1989
).
46.
Y. P.
Kuo
,
G. H.
Wann
, and
Y.-P.
Lee
,
J. Chem. Phys.
99
(
5
),
3272
3276
(
1993
).
47.
E. J.
Feltham
,
M. J.
Almond
,
G.
Marston
,
K. S.
Wiltshire
, and
N.
Goldberg
,
Spectrochim. Acta, Part A
56
(
13
),
2589
2603
(
2000
).
48.
M.
Bahou
,
P.
Das
,
Y.-F.
Lee
,
Y.-J.
Wu
, and
Y. P.
Lee
,
Phys. Chem. Chem. Phys.
16
(
6
),
2200
2210
(
2014
).
49.
A.
Schneiker
,
S.
Góbi
,
P. R.
Joshi
,
G.
Bazsó
,
Y.-P.
Lee
, and
G.
Tarczay
,
J. Phys. Chem. Lett.
12
(
28
),
6744
6751
(
2021
).
50.
K. A.
Haupa
,
G.
Tarczay
, and
Y.-P.
Lee
,
J. Am. Chem. Soc.
141
(
29
),
11614
11620
(
2019
).
51.
K. A.
Haupa
,
P. R.
Joshi
, and
Y.-P.
Lee
,
J. Chin. Chem. Soc.
69
(
8
),
1159
1173
(
2022
).
52.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
483
(
1989
).
53.
D. N.
Laikov
and
Y. A.
Ustynyuk
,
Russ. Chem. Bull.
54
,
820
826
(
2005
).
54.
D. N.
Laikov
,
Theor. Chem. Acc.
138
,
40
(
2019
).
55.
V.
Barone
,
M.
Biczysko
, and
J.
Bloino
,
Phys. Chem. Chem. Phys.
16
(
5
),
1759
1787
(
2014
).
56.
M. J.
Frisch
et al, Gaussian 09, Revision A.02,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
57.
V.
Barone
,
J. Chem. Phys.
122
(
1
),
014108
(
2005
).
58.
G.
Bazsó
,
I. P.
Csonka
,
S.
Góbi
, and
G.
Tarczay
,
Rev. Sci. Instrum.
92
(
12
),
124104
(
2021
).
59.
P. V.
Zasimov
,
A. V.
Belousov
,
I. A.
Baranova
, and
V. I.
Feldman
,
Radiat. Phys. Chem.
177
,
109084
(
2020
).
60.
S. K.
Agrawal
,
D.
Pal
,
A.
Chakraborty
, and
S.
Chakraborty
,
Chem. Phys.
537
,
110851
(
2020
).
61.
J. P.
Perchard
and
M. L.
Josien
,
J. Chim. Phys.
65
,
1834
1855
(
1968
).
62.
A. J.
Barnes
and
H. E.
Hallam
,
Trans. Faraday Soc.
66
,
1932
1940
(
1970
).
63.
S.
Coussan
,
M. E.
Alikhani
,
J. P.
Perchard
, and
W. Q.
Zheng
,
J. Phys. Chem. A
104
(
23
),
5475
5483
(
2000
).
64.
S.
Tam
and
M. E.
Fajardo
,
Low Temp. Phys.
26
,
653
660
(
2000
).
65.
M. E.
Fajardo
and
C. M.
Lindsay
,
J. Chem. Phys.
128
,
014505
(
2008
).
66.
M. L.
Estep
,
W. J.
Morgan
,
A. T.
Winkles
,
A. S.
Abbott
,
N.
Villegas-Escobar
,
J. W.
Mullinax
,
W. E.
Turner
,
X.
Wang
,
J. M.
Turney
, and
H. F.
Schaefer
III
,
Phys. Chem. Chem. Phys.
19
(
40
),
27275
27287
(
2017
).
67.
M.
Hawkins
and
L.
Andrews
,
J. Am. Chem. Soc.
105
(
9
),
2523
2530
(
1983
).
68.
P. V.
Zasimov
,
E. V.
Sanochkina
, and
V. I.
Feldman
,
Phys. Chem. Chem. Phys.
24
(
1
),
419
432
(
2022
).
69.
W. E.
Thompson
and
M. E.
Jacox
,
J. Chem. Phys.
91
(
7
),
3826
3837
(
1989
).
70.
P.
Das
and
Y.-P.
Lee
,
J. Chem. Phys.
140
(
24
),
244303
(
2014
).
71.
S. V.
Ryazantsev
and
V. I.
Feldman
,
J. Phys. Chem. A
119
(
11
),
2578
2586
(
2015
).
72.
J.
Eberlein
and
M.
Creuzburg
,
J. Chem. Phys.
106
(
6
),
2188
2194
(
1997
).
73.
V. I.
Feldman
,
F. F.
Sukhov
, and
A. Y.
Orlov
,
Chem. Phys. Lett.
280
(
5–6
),
507
512
(
1997
).
74.
M.
Pettersson
,
L.
Khriachtchev
,
S.
Jolkkonen
, and
M.
Räsänen
,
J. Phys. Chem. A
103
(
45
),
9154
9162
(
1999
).
75.
M. E.
Jacox
,
Chem. Phys.
69
(
3
),
407
422
(
1982
).
76.
L.
Khriachtchev
,
M.
Räsänen
, and
R. B.
Gerber
,
Acc. Chem. Res.
42
(
1
),
183
191
(
2009
).
77.
E. F.
Carvalho
,
A. N.
Barauna
,
F. B.
Machado
, and
O.
Roberto-Neto
,
Int. J. Quantum Chem.
108
(
13
),
2476
2485
(
2008
).
78.
P. R.
Schreiner
,
J. Am. Chem. Soc.
139
(
43
),
15276
15283
(
2017
).
79.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 22, May 2022, Editor: R. D. Johnson III, http://cccbdb.nist.gov/; http://doi.org/10.18434/T47C7Z.
80.
F.
Šlemr
and
P.
Warneck
,
Ber. Bunsengesellschaft Phys. Chem.
79
(
2
),
152
156
(
1975
).
81.
V. I.
Feldman
,
F. F.
Sukhov
,
E. A.
Logacheva
,
A. Y.
Orlov
,
I. V.
Tyulpina
, and
D. A.
Tyurin
,
Chem. Phys. Lett.
437
(
4–6
),
207
211
(
2007
).
82.
M.
Bahou
,
Y. J.
Wu
, and
Y.-P.
Lee
,
J. Chem. Phys.
136
(
15
),
154304
(
2012
).

Supplementary Material

You do not currently have access to this content.