Alkoxide precursors have been highlighted for depositing carbon-free films, but their use in Atomic Layer Deposition (ALD) often exhibits a non-saturated growth. This indicates no self-limiting growth due to the chain reaction of hydrolysis or ligand decomposition caused by β-hydride elimination. In the previous study, we demonstrated that self-limiting growth of ALD can be achieved using our newly developed precursor, hafnium cyclopentadienyl tris(N-ethoxy-2,2-dimethyl propanamido) [HfCp(edpa)3]. To elucidate the growth mechanism and the role of cyclopentadienyl (Cp) ligand in a heteroleptic alkoxide precursor, herein, we compare homoleptic and heteroleptic Hf precursors consisting of N-ethoxy-2,2-dimethyl propanamido (edpa) ligands with and without cyclopentadienyl ligand—hafnium tetrakis(N-ethoxy-2,2-dimethyl propanamido) [Hf(edpa)4] and HfCp(edpa)3. We also investigate the role of a Cp ligand in growth characteristics. By substituting an alkoxide ligand with a Cp ligand, we could modify the surface reaction during ALD, preventing undesired reactions. The last remaining edpa after Hf(edpa)4 adsorption can undergo a hydride elimination reaction, resulting in surface O–H generation. In contrast, Cp remains after the HfCp(edpa)3 adsorption. Accordingly, we observe proper ALD growth with self-limiting properties. Thus, a comparative study of different ligands of the precursors can provide critical clues to the design of alkoxide precursors for obtaining typical ALD growth with a saturation behavior.

1.
S. M.
George
,
A. W.
Ott
, and
J. W.
Klaus
, “
Surface chemistry for atomic layer growth
,”
J. Phys. Chem.
100
,
13121
13131
(
1996
).
2.
K.
Kukli
,
M.
Ritala
,
J.
Sundqvist
,
J.
Aarik
,
J.
Lu
,
T.
Sajavaara
,
M.
Leskelä
, and
A.
Hårsta
, “
Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen
,”
J. Appl. Phys.
92
,
5698
5703
(
2002
).
3.
M. T.
Ho
,
Y.
Wang
,
R. T.
Brewer
,
L. S.
Wielunski
,
Y. J.
Chabal
,
N.
Moumen
, and
M.
Boleslawski
, “
In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition
,”
Appl. Phys. Lett.
87
,
133103
(
2005
).
4.
J.
Niinistö
,
M.
Putkonen
,
L.
Niinistö
,
F.
Song
,
P.
Williams
,
P. N.
Heys
, and
R.
Odedra
, “
Atomic layer deposition of HfO2 thin films exploiting novel cyclopentadienyl precursors at high temperatures
,”
Chem. Mater.
19
,
3319
3324
(
2007
).
5.
K.
Kukli
,
M.
Ritala
,
T.
Sajavaara
,
J.
Keinonen
, and
M.
Leskelä
, “
Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors
,”
Thin Solid Films
416
,
72
79
(
2002
).
6.
M.
Cho
,
R.
Degraeve
,
G.
Pourtois
,
A.
Delabie
,
L. Å.
Ragnarsson
,
T.
Kauerauf
,
G.
Groeseneken
,
S.
De Gendt
,
M.
Heyns
, and
C. S.
Hwang
, “
Study of the reliability impact of chlorine precursor residues in thin atomic-layer-deposited HfO2 layers
,”
IEEE Trans. Electron Devices
54
,
752
758
(
2007
).
7.
D.
Triyoso
,
R.
Liu
,
D.
Roan
,
M.
Ramon
,
N. V.
Edwards
,
R.
Gregory
,
D.
Werho
,
J.
Kulik
,
G.
Tam
,
E.
Irwin
,
X. D.
Wang
,
L. B.
La
,
C.
Hobbs
,
R.
Garcia
,
J.
Baker
,
B. E.
White
, and
P.
Tobin
, “
Impact of deposition and annealing temperature on material and electrical characteristics of ALD HfO2
,”
J. Electrochem. Soc.
151
,
220
227
(
2004
).
8.
C. B.
Musgrave
and
R. G.
Gordon
, “
Precursors for atomic layer deposition of high-k dielectrics
,”
Future Fab Int.
7,
18
,
126
128
(
2005
).
9.
C. L.
Platt
,
N.
Li
,
K.
Li
, and
T. M.
Klein
, “
Atomic layer deposition of HfO2: Growth initiation study on metallic underlayers
,”
Thin Solid Films
518
,
4081
4086
(
2010
).
10.
I. K.
Oh
,
M. K.
Kim
,
J. S.
Lee
,
C. W.
Lee
,
C.
Lansalot-Matras
,
W.
Noh
,
J.
Park
,
A.
Noori
,
D.
Thompson
,
S.
Chu
,
W. J.
Maeng
, and
H.
Kim
, “
The effect of La2O3-incorporation in HfO2 dielectrics on Ge substrate by atomic layer deposition
,”
Appl. Surf. Sci.
287
,
349
354
(
2013
).
11.
W. J.
Maeng
,
I.-K.
Oh
,
W.-H.
Kim
,
M.-K.
Kim
,
C.-W.
Lee
,
C.
Lansalot-Matras
,
D.
Thompson
,
S.
Chu
, and
H.
Kim
, “
Atomic layer deposition of CeO2/HfO2 gate dielectrics on Ge substrate
,”
Appl. Surf. Sci.
321
,
214
218
(
2014
).
12.
I.-K.
Oh
,
J.
Tanskanen
,
H.
Jung
,
S. K.
Lee
,
M. J.
Lee
,
Z.
Lee
,
K.
Kim
,
J. H.
Ahn
,
C. W.
Lee
,
K.
Kim
,
H.
Kim
, and
H. B. R.
Lee
, “
Nucleation and growth of the HfO2 dielectric layer for graphene-based devices
,”
Chem. Mater.
27
,
5868
5877
(
2015
).
13.
N. K.
Oh
,
J.-T.
Kim
,
J.-K.
Ahn
,
G.
Kang
,
S. Y.
Kim
, and
J.-Y.
Yun
, “
The effects of thermal decomposition of tetrakis-ethylmethylaminohafnium (TEMAHf) precursors on HfO2Film growth using atomic layer deposition
,”
APPL. Sci. Convergence Technol.
25
,
56
60
(
2016
).
14.
Y.
Senzaki
,
S.
Park
,
H.
Chatham
,
L.
Bartholomew
, and
W.
Nieveen
, “
Atomic layer deposition of hafnium oxide and hafnium silicate thin films using liquid precursors and ozone
,”
J. Vac. Sci. Technol., A
22
,
1175
1181
(
2004
).
15.
X.
Liu
,
S.
Ramanathan
,
A.
Longdergan
,
A.
Srivastava
,
E.
Lee
,
T. E.
Seidel
,
J. T.
Barton
,
D.
Pang
, and
R. G.
Gordon
, “
ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone
,”
J. Electrochem. Soc.
152
,
213
219
(
2005
).
16.
J. J.
Gallegos III
,
T. L.
Ward
,
T. J.
Boyle
,
M. A.
Rodriguez
, and
L. P.
Francisco
, “
Neo-pentoxide precursors for MOCVD thin films of TiO2 and ZrO2
,”
Chem. Vap. Deposition
6
,
21
26
(
2000
).
17.
D. C.
Bradley
,
R. C.
Mehrotra
, and
D. P.
Gaur
,
Metal Alkoxides
(
Academic Press
,
London
,
1978
).
18.
K.
Endo
and
T.
Tatsumi
, “
Metal organic atomic layer deposition of high-k gate dielectrics using plasma oxidation
,”
Jpn. J. Appl. Phys.
42
,
L685
L687
(
2003
).
19.
K.
Kukli
,
M.
Ritala
,
M.
Leskelä
,
T.
Sajavaara
,
J.
Keinonen
,
A. C.
Jones
, and
N. L.
Tobin
, “
Atomic layer deposition of hafnium dioxide films from hafnium hydroxylamide and water
,”
Chem. Vap. Deposition
10
,
91
96
(
2004
).
20.
R.
Matero
,
M.
Ritala
,
M.
Leskelä
,
A. C.
Jones
,
P. A.
Williams
,
J. F.
Bickley
,
A.
Steiner
,
T. J.
Leedham
, and
H. O.
Davies
, “
Atomic layer deposition of ZrO2 thin films using a new alkoxide precursor
,”
J. Non-Cryst. Solids
303
,
24
28
(
2002
).
21.
K.
Kukli
,
M.
Ritala
, and
M.
Leskelä
, “
Low-temperature deposition of zirconium oxide-based nanocrystalline films by alternate supply of Zr[OC(CH3)3]4 and H2O
,”
Chem. Vap. Deposition
6
,
297
302
(
2000
).
22.
D. C.
Bradley
, “
Metal alkoxides as precursors for electronic and ceramic materials
,”
Chem. Rev.
89
,
1317
1322
(
1989
).
23.
A. C.
Jones
,
H. C.
Aspinall
,
P. R.
Chalker
,
R. J.
Potter
,
T. D.
Manning
,
Y. F.
Loo
,
R.
O’Kane
,
J. M.
Gaskell
, and
L. M.
Smith
, “
MOCVD and ALD of high-k dielectric oxides using alkoxide precursors
,”
Chem. Vap. Deposition
12
,
83
98
(
2006
).
24.
M. A.
Cameron
and
S. M.
George
, “
ZrO2 film growth by chemical vapor deposition using zirconium tetra- tert- butoxide
,”
Thin Solid Films
348
,
90
98
(
1999
).
25.
R. J.
Potter
,
P. R.
Chalker
,
T. D.
Manning
,
H. C.
Aspinall
,
Y. F.
Loo
,
A. C.
Jones
,
L. M.
Smith
,
G. W.
Critchlow
, and
M.
Schumacher
, “
Deposition of HfO2, Gd2O3 and PrOx by liquid injection ALD techniques
,”
Chem. Vap. Deposition
11
,
159
169
(
2005
).
26.
K.
Kukli
,
M.
Ritala
,
M.
Leskelä
,
T.
Sajavaara
,
J.
Keinonen
,
A. C.
Jones
, and
J. L.
Roberts
, “
Atomic layer deposition of hafnium dioxide films using hafnium bis(2-butanolate)bis(1-methoxy-2-methyl-2-propanolate) and water
,”
Chem. Vap. Deposition
9
,
315
320
(
2003
).
27.
T.
Blanquart
,
J.
Niinistö
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of groups 4 and 5 transition metal oxide thin films: Focus on heteroleptic precursors
,”
Chem. Vap. Deposition
20
,
189
208
(
2014
).
28.
G. Y.
Lee
,
S.
Yeo
,
S. H.
Han
,
B. K.
Park
,
T.
Eom
,
J. H.
Kim
,
S. H.
Kim
,
H.
Kim
,
S. U.
Son
, and
T. M.
Chung
, “
Group IV transition metal (M = Zr, Hf) precursors for high-κ metal oxide thin films
,”
Inorg. Chem.
60
,
17722
17732
(
2021
).
29.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
GAUSSIAN 16, Revision C.01
,
Gaussian Inc.
,
Wallingford, CT
,
2016
.
30.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
31.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
32.
J. M. L.
Martin
and
A.
Sundermann
, “
Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe
,”
J. Chem. Phys.
114
,
3408
3420
(
2001
).
33.
H.
Le Tulzo
,
N.
Schneider
, and
F.
Donsanti
, “
In situ microgravimetric study of ion exchanges in the ternary Cu-In-S system prepared by atomic layer deposition
,”
Materials
13
,
645
(
2020
).
34.
J.
Hennessy
and
S.
Nikzad
, “
Atomic layer deposition of lithium fluoride optical coatings for the ultraviolet
,”
Inorganics
6
,
46
(
2018
).
35.
H. Y.
Kim
,
J. H.
Nam
,
S. M.
George
,
J.-S.
Park
,
B. K.
Park
,
G. H.
Kim
,
D. J.
Jeon
,
T.-M.
Chung
, and
J. H.
Han
, “
Phase-controlled SnO2 and SnO growth by atomic layer deposition using Bis(N-ethoxy-2,2-dimethyl propanamido)tin precursor
,”
Ceram. Int.
45
,
5124
5132
(
2019
).
36.
M.
Shirazi
and
S. D.
Elliott
, “
Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory
,”
J. Comput. Chem.
35
,
244
259
(
2014
).
37.
C. S.
Kang
,
H. J.
Cho
,
R.
Choi
,
Y. H.
Kim
,
C. Y.
Kang
,
S. J.
Rhee
,
C.
Choi
,
M. S.
Akbar
, and
J. C.
Lee
, “
The electrical and material characterization of hafnium oxynitride gate dielectrics with TaN-gate electrode
,”
IEEE Trans. Electron Devices
51
,
220
227
(
2004
).
38.
W. J.
Maeng
,
G. H.
Gu
,
C. G.
Park
,
K.
Lee
,
T.
Lee
, and
H.
Kim
, “
HfO2/HfOxNy/HfO2 gate dielectric fabricated by in situ oxidation of plasma-enhanced atomic layer deposition HfN middle layer
,”
J. Electrochem. Soc.
156
,
G109
(
2009
).
39.
H.-S.
Jung
,
H. K.
Kim
,
J. H.
Kim
,
S.-J.
Won
,
D.-Y.
Cho
,
J.
Lee
,
S. Y.
Lee
,
C. S.
Hwang
,
J.-M.
Park
,
W.-H.
Kim
,
M.-W.
Song
,
N.-I.
Lee
, and
S.
Heo
, “
Electrical and bias temperature instability characteristics of n-type field-effect transistors using HfOxNy gate dielectrics
,”
J. Electrochem. Soc.
157
,
G121
(
2010
).
40.
D. Y.
Cho
,
S. J.
Oh
,
Y. J.
Chang
,
T. W.
Noh
,
R.
Jung
, and
J. C.
Lee
, “
Role of oxygen vacancy in HfO2∕SiO2∕Si(100) interfaces
,”
Appl. Phys. Lett.
88
,
2
5
(
2006
).
41.
T. C.
Tien
,
L. C.
Lin
,
L. S.
Lee
,
C. J.
Hwang
,
S.
Maikap
, and
Y. M.
Shulga
, “
Analysis of weakly bonded oxygen in HfO2/SiO2/Si stacks by using HRBS and ARXPS
,”
J. Mater. Sci. Mater. Electron.
21
,
475
480
(
2010
).
42.
L.
Sha
,
R.
Puthenkovilakam
,
Y.-S.
Lin
, and
J. P.
Chang
, “
Ion-enhanced chemical etching of HfO2 for integration in metal–oxide–semiconductor field effect transistors
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom.
21
,
2420
2427
(
2003
).
43.
S.
Hashimoto
,
C.
Tanaka
, and
A.
Murata
, “
Formulation for XPS spectral change of oxides by Ar ion bombardment: Application of the formulation to Ta2O5 system
,”
J. Surf. Anal.
13
,
14
18
(
2006
).
44.
R.
Zazpe
,
M.
Ungureanu
,
F.
Golmar
,
P.
Stoliar
,
R.
Llopis
,
F.
Casanova
,
D. F.
Pickup
,
C.
Rogero
, and
L. E.
Hueso
, “
Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices
,”
J. Mater. Chem. C
2
,
3204
3211
(
2014
).
45.
M.
Shirazi
and
S. D.
Elliott
, “
Multiple proton diffusion and film densification in atomic layer deposition modeled by density functional theory
,”
Chem. Mater.
25
,
878
889
(
2013
).
46.
A.
Lamperti
,
L.
Lamagna
,
G.
Congedo
, and
S.
Spiga
, “
Cubic/tetragonal phase stabilization in high-κ ZrO2 thin films grown using O3-based atomic layer deposition
,”
J. Electrochem. Soc.
158
,
G221
(
2011
).
47.
D. K.
Venkatachalam
,
J. E.
Bradby
,
M. N.
Saleh
,
S.
Ruffell
, and
R. G.
Elliman
, “
Nanomechanical properties of sputter-deposited HfO2 and HfxSi1-xO2 thin films
,”
J. Appl. Phys.
110
,
043527
(
2011
).
48.
S. W.
Lee
,
H.
Kim
, and
J.-H.
Ahn
, “
Enhanced physical and electrical properties of HfO2 deposited by atomic layer deposition using a novel precursor with improved thermal stability
,”
Surf. Interfaces
42
,
103499
(
2023
).
49.
M. H.
Cho
,
Y. S.
Roh
,
C. N.
Whang
,
K.
Jeong
,
S. W.
Nahm
,
D. H.
Ko
,
J. H.
Lee
,
N. I.
Lee
, and
K.
Fujihara
, “
Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition
,”
Appl. Phys. Lett.
81
,
472
474
(
2002
).
50.
D.
Vanderbilt
,
X.
Zhao
, and
D.
Ceresoli
, “
Structural and dielectric properties of crystalline and amorphous ZrO2
,”
Thin Solid Films
486
,
125
128
(
2005
).
51.
J.
Niinistö
,
K.
Kukli
,
T.
Sajavaara
,
M.
Ritala
,
M.
Leskelä
,
L.
Oberbeck
,
J.
Sundqvist
, and
U.
Schröder
, “
Atomic layer deposition of high-permittivity Yttrium-doped HfO2 films
,”
Electrochem. Solid-State Lett.
12
,
12
16
(
2008
).
52.
G. M.
Rignanese
, “
Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-κ candidates: The contribution of density-functional theory
,”
J. Phys.: Condens. Matter.
17
,
R357
(
2005
).
53.
K.
Okamoto
,
M.
Adachi
,
K.
Kakushima
,
P.
Ahmet
,
N.
Sugii
,
K.
Tsutsui
,
T.
Hattori
, and
H.
Iwai
, “
Effective control of flat-band voltage in HfO2 gate dielectric with La2O3 incorporation
,” in
ESSDERC 2007 - 37th European Solid State Device Research Conference 2007
,
2007
, pp.
199
202
.
54.
P. S.
Winokur
,
J. R.
Schwank
,
P. J.
McWhorter
,
P. V.
Dressendorfer
, and
D. C.
Turpin
, “
Correlating the radiation response of mos capacitors and transistors
,”
IEEE Trans. Nucl. Sci.
31
,
1453
1460
(
1984
).
55.
B. E.
Park
,
I. K.
Oh
,
C. W.
Lee
,
G.
Lee
,
Y. H.
Shin
,
C.
Lansalot-Matras
,
W.
Noh
,
H.
Kim
, and
H. B. R.
Lee
, “
Effects of Cl-based ligand structures on atomic layer deposited HfO2
,”
J. Phys. Chem. C
120
,
5958
5967
(
2016
).
56.
J. L.
Gavartin
,
L.
Fonseca
,
G.
Bersuker
, and
A. L.
Shluger
, “
Ab initio modeling of structure and defects at the HfO2/Si interface
,”
Microelectron. Eng.
80
,
412
415
(
2005
).
57.
M. H.
Jo
and
H. H.
Park
, “
Leakage current and dielectric breakdown behavior in annealed SiO2 aerogel films
,”
Appl. Phys. Lett.
72
,
1391
1393
(
1998
).
You do not currently have access to this content.