Event-Chain Monte Carlo (ECMC) methods generate continuous-time and non-reversible Markov processes, which often display significant accelerations compared to their reversible counterparts. However, their generalization to any system may appear less straightforward. In this work, our aim is to distinctly define the essential symmetries that such ECMC algorithms must adhere to, differentiating between necessary and sufficient conditions. This exploration intends to delineate the balance between requirements that could be overly limiting in broad applications and those that are fundamentally essential. To do so, we build on the recent analytical description of such methods as generating piecewise deterministic Markov processes. Therefore, starting with translational flows, we establish the necessary rotational invariance of the probability flows, along with determining the minimum event rate. This rate is identified with the corresponding infinitesimal Metropolis rejection rate. Obeying such conditions ensures the correct invariance for any ECMC scheme. Subsequently, we extend these findings to encompass schemes involving deterministic flows that are more general than mere translational ones. Specifically, we define two classes of interest of general flows: the ideal and uniform-ideal ones. They, respectively, suppress or reduce the event rates. From there, we implement a comprehensive non-reversible sampling of a system of hard dimers by introducing rotational flows, which are uniform-ideal. This implementation results in a speed-up of up to ∼3 compared to the state-of-the-art ECMC/Metropolis hybrid scheme.

1.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
2.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol.
1
.
3.
W. Janke, “Statistical analysis of simulations: Data correlations and error estimation,” in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, J. Grotendorst, D. Marx, A. Muramatsu (Eds.), John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 423–445 (2002).
4.
D. A.
Levin
and
Y.
Peres
,
Markov Chains and Mixing Times
(
American Mathematical Society
,
2017
), Vol.
107
.
5.
P. C. B. I.
Halperin
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
479
(
1977
).
6.
R. H. J.-S.
Wang
and
J.-S.
Wang
, “
Nonuniversal critical dynamics in Monte Carlo simulations
,”
Phys. Rev. Lett.
58
,
86
(
1987
).
7.
U.
Wolff
, “
Collective Monte Carlo updating for spin systems
,”
Phys. Rev. Lett.
62
,
361
(
1989
).
8.
E. P.
Bernard
,
W.
Krauth
, and
D. B.
Wilson
, “
Event-chain Monte Carlo algorithms for hard-sphere systems
,”
Phys. Rev. E
80
,
056704
(
2009
).
9.
M.
Michel
,
S. C.
Kapfer
, and
W.
Krauth
, “
Generalized event-chain Monte Carlo: Constructing rejection-free global-balance algorithms from infinitesimal steps
,”
J. Chem. Phys.
140
,
054116
(
2014
).
10.
T. A.
Kampmann
,
H.-H.
Boltz
, and
J.
Kierfeld
, “
Monte Carlo simulation of dense polymer melts using event chain algorithms
,”
J. Chem. Phys.
143
,
044105
(
2015
).
11.
M.
Michel
,
J.
Mayer
, and
W.
Krauth
, “
Event-chain Monte Carlo for classical continuous spin models
,”
Europhys. Lett.
112
,
20003
(
2015
).
12.
Y.
Nishikawa
,
M.
Michel
,
W.
Krauth
, and
K.
Hukushima
, “
Event-chain algorithm for the Heisenberg model: Evidence for z ≃ 1 dynamic scaling
,”
Phys. Rev. E
92
,
063306
(
2015
).
13.
M. F.
Faulkner
,
L.
Qin
,
A. C.
Maggs
, and
W.
Krauth
, “
All-atom computations with irreversible Markov chains
,”
J. Chem. Phys.
149
,
064113
(
2018
).
14.
J.
Harland
,
M.
Michel
,
T. A.
Kampmann
, and
J.
Kierfeld
, “
Event-chain Monte Carlo algorithms for three-and many-particle interactions
,”
Europhys. Lett.
117
,
30001
(
2017
).
15.
M.
Michel
,
A.
Durmus
, and
S.
Sénécal
, “
Forward event-chain Monte Carlo: Fast sampling by randomness control in irreversible Markov chains
,”
J. Comput. Graph. Stat.
29
,
689
702
(
2020
).
16.
M. M.
Engel
and
M.
Engel
, “
Efficient equilibration of hard spheres with Newtonian event chains
,”
J. Chem. Phys.
150
,
174108
(
2019
).
17.
P.
Vanetti
,
A.
Bouchard-Côté
,
G.
Deligiannidis
, and
A.
Doucet
, “
Piecewise-deterministic Markov chain Monte Carlo
,” arXiv:1707.05296 (
2017
).
18.
J.
Bierkens
,
S.
Grazzi
,
K.
Kamatani
, and
G.
Roberts
, “
The boomerang sampler
,” in
Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research
, edited by
H.
Daumé
III
and
A.
Singh
(
PMLR
,
2020
), Vol.
119
, pp.
908
918
.
19.
P.
Höllmer
,
A.
Maggs
, and
W.
Krauth
, “
Hard-disk dipoles and non-reversible Markov chains
,”
J. Chem. Phys.
156
,
084108
(
2022
).
20.
M.
Klement
,
S.
Lee
,
J. A.
Anderson
, and
M.
Engel
, “
Newtonian event-chain Monte Carlo and collision prediction with polyhedral particles
,”
J. Chem. Theory Comput.
17
,
4686
4696
(
2021
).
21.
A.
Monemvassitis
,
A.
Guillin
, and
M.
Michel
, “
PDMP characterisation of event-chain Monte Carlo algorithms for particle systems
,”
J. Stat. Phys.
190
,
66
(
2023
).
22.
F.
Chen
,
L.
Lovász
, and
I.
Pak
, “
Lifting Markov chains to speed up mixing
,” in
Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999)
(
ACM
,
New York
,
1999
), pp.
275
281
.
23.
P.
Diaconis
,
S.
Holmes
, and
R. M.
Neal
, “
Analysis of a nonreversible Markov chain sampler
,”
Ann. Appl. Probab.
10
,
726
752
(
2000
).
24.
M. H.
Davis
, “
Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
46
,
353
376
(
1984
).
25.
M. H. A.
Davis
, “
Markov models and optimization
,” in
Monographs on Statistics and Applied Probability
(
Chapman & Hall
,
London
,
1993
), Vol.
49
, p.
xiv+295
.
26.
S. C. W.
Krauth
and
W.
Krauth
, “
Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions
,”
Phys. Rev. Lett.
114
,
035702
(
2015
).
27.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
28.

In more details, the changes are ϕvx,v=1R*(l)(1lAe,0,0) and μ(e,l,i)=ν01+ν01{0}(l)1{0}(e)+11+ν01R*(l)12π1S1(e)ν(l)1N1{1,,N}(i).

29.
K. W.
Wojciechowski
,
A. C.
Brańka
, and
D.
Frenkel
, “
Monte Carlo simulations of a two-dimensional hard dimer system
,”
Physica A
196
,
519
545
(
1993
).
30.
L. F.
Cugliandolo
,
P.
Digregorio
,
G.
Gonnella
, and
A.
Suma
, “
Phase coexistence in two-dimensional passive and active dumbbell systems
,”
Phys. Rev. Lett.
119
,
268002
(
2017
).
31.
E. P. W.
Krauth
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
32.
K. J.
Strandburg
, “
Two-dimensional melting
,”
Rev. Mod. Phys.
60
,
161
207
(
1988
).
33.
R. D.
Frenkel
and
D.
Frenkel
, “
Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets
,”
Mol. Phys.
52
,
1303
1334
(
1984
).
34.
J.
Bierkens
,
G. O.
Roberts
, and
P.-A.
Zitt
, “
Ergodicity of the zigzag process
,”
Ann. Appl. Probab.
29
,
2266
2301
(
2019
).
35.
L.
Qin
,
P.
Höllmer
, and
W.
Krauth
, “
Direction-sweep Markov chains
,”
J. Phys. A: Math. Theor.
55
,
105003
(
2022
).
36.
T. A.
Kampmann
,
H.-H.
Boltz
, and
J.
Kierfeld
, “
Parallelized event chain algorithm for dense hard sphere and polymer systems
,”
J. Comput. Phys.
281
,
864
875
(
2015
).
37.
B.
Li
,
S.
Todo
,
A. C.
Maggs
, and
W.
Krauth
, “
Multithreaded event-chain Monte Carlo with local times
,”
Comput. Phys. Commun.
261
,
107702
(
2021
).
You do not currently have access to this content.