Molecular simulations serve as indispensable tools for investigating the kinetics and elucidating the mechanism of hindered ion transport across nanoporous membranes. In particular, recent advancements in advanced sampling techniques have made it possible to access translocation timescales spanning several orders of magnitude. In our prior study [Shoemaker et al., J. Chem. Theory Comput. 18, 7142 (2022)], we identified significant finite size artifacts in simulations of pressure-driven hindered ion transport through nanoporous graphitic membranes. We introduced the ideal conductor model, which effectively corrects for such artifacts by assuming the feed to be an ideal conductor. In the present work, we introduce the ideal conductor dielectric model (Icdm), a generalization of our earlier model, which accounts for the dielectric properties of both the membrane and the filtrate. Using the Icdm model substantially enhances the agreement among corrected free energy profiles obtained from systems of varying sizes, with notable improvements observed in regions proximate to the pore exit. Moreover, the model has the capability to consider secondary ion passage events, including the transport of a co-ion subsequent to the traversal of a counter-ion, a feature that is absent in our original model. We also investigate the sensitivity of the new model to various implementation details. The Icdm model offers a universally applicable framework for addressing finite size artifacts in molecular simulations of ion transport. It stands as a significant advancement in our quest to use molecular simulations to comprehensively understand and manipulate ion transport processes through nanoporous membranes.

2.
S. D.
Tyerman
,
S. A.
McGaughey
,
J.
Qiu
,
A. J.
Yool
, and
C. S.
Byrt
,
Annu. Rev. Plant Biol.
72
,
703
(
2021
).
3.
R.
Tan
,
A.
Wang
,
R.
Malpass-Evans
,
R.
Williams
,
E. W.
Zhao
,
T.
Liu
,
C.
Ye
,
X.
Zhou
,
B. P.
Darwich
,
Z.
Fan
et al,
Nat. Mater.
19
,
195
(
2020
).
4.
P.
Xiong
,
L.
Zhang
,
Y.
Chen
,
S.
Peng
, and
G.
Yu
,
Angew. Chem., Int. Ed.
60
,
24770
(
2021
).
5.
K.-D.
Kreuer
,
Chem. Mater.
26
,
361
(
2014
).
6.
A.
Giwa
,
N.
Akther
,
V.
Dufour
, and
S. W.
Hasan
,
RSC Adv.
6
,
8134
(
2016
).
7.
M.
Thomas
,
B.
Corry
, and
T. A.
Hilder
,
Small
10
,
1453
(
2014
).
8.
M. T. H.
van Vliet
,
E. R.
Jones
,
M.
Flörke
,
W. H. P.
Franssen
,
N.
Hanasaki
,
Y.
Wada
, and
J. R.
Yearsley
,
Environ. Res. Lett.
16
,
024020
(
2021
).
9.
P.
Gerland
,
A. E.
Raftery
,
H.
Ševčíková
,
N.
Li
,
D.
Gu
,
T.
Spoorenberg
,
L.
Alkema
,
B. K.
Fosdick
,
J.
Chunn
,
N.
Lalic
et al,
Science
346
,
234
(
2014
).
10.
C.
He
,
Z.
Liu
,
J.
Wu
,
X.
Pan
,
Z.
Fang
,
J.
Li
, and
B. A.
Bryan
,
Nat. Commun.
12
,
4667
(
2021
).
11.
L.
Gudmundsson
,
S. I.
Seneviratne
, and
X.
Zhang
,
Nat. Clim. Change
7
,
813
(
2017
).
12.
E.
Jones
,
M.
Qadir
,
M. T.
van Vliet
,
V.
Smakhtin
, and
S. m.
Kang
,
Sci. Total Environ.
657
,
1343
(
2019
).
13.
M.
Elimelech
and
W. A.
Phillip
,
Science
333
,
712
(
2011
).
14.
A.
Panagopoulos
,
K.-J.
Haralambous
, and
M.
Loizidou
,
Sci. Total Environ.
693
,
133545
(
2019
).
15.
S.
Jiang
,
Y.
Li
, and
B. P.
Ladewig
,
Sci. Total Environ.
595
,
567
(
2017
).
16.
D.
Cohen-Tanugi
and
J. C.
Grossman
,
Nano Lett.
12
,
3602
(
2012
).
17.
D.
Cohen-Tanugi
and
J. C.
Grossman
,
Desalination
366
,
59
(
2015
).
18.
19.
H.
Malmir
,
R.
Epsztein
,
M.
Elimelech
, and
A.
Haji-Akbari
,
Matter
2
,
735
(
2020
).
20.
B. A.
Shoemaker
,
T. S.
Domingues
, and
A.
Haji-Akbari
,
J. Chem. Theory Comput.
18
,
7142
(
2022
).
21.
B. A.
Shoemaker
,
O.
Khalifa
, and
A.
Haji-Akbari
, Correlations in charged multi-pore systems: Implications for enhancing selectivity and permeability in nanoporous membranes,
ACS Nano
(published online, 2023).
22.
A.
Nalaparaju
and
J.
Jiang
,
J. Phys. Chem. C
116
,
6925
(
2012
).
23.
E.
Harder
,
D. E.
Walters
,
Y. D.
Bodnar
,
R. S.
Faibish
, and
B.
Roux
,
J. Phys. Chem. B
113
,
10177
(
2009
).
24.
M.
Shen
,
S.
Keten
, and
R. M.
Lueptow
,
J. Membr. Sci.
506
,
95
(
2016
).
25.
F.
Khalili-Araghi
,
J.
Gumbart
,
P.-C.
Wen
,
M.
Sotomayor
,
E.
Tajkhorshid
, and
K.
Schulten
,
Curr. Opin. Struct. Biol.
19
,
128
(
2009
).
26.
F.
Zhu
,
E.
Tajkhorshid
, and
K.
Schulten
,
Biophys. J.
86
,
50
(
2004
).
27.
J. S.
Hub
and
B. L.
de Groot
,
Biophys. J.
91
,
842
(
2006
).
28.
J. S.
Hub
and
B. L.
De Groot
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
1198
(
2008
).
29.
I.
Kim
and
T. W.
Allen
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
17963
(
2011
).
30.
E. B.
Nordquist
,
Z.
Jia
, and
J.
Chen
,
Biophys. J.
122
,
1158
(
2023
).
31.
S. H.
Jamali
,
L.
Wolff
,
T. M.
Becker
,
A.
Bardow
,
T. J.
Vlugt
, and
O. A.
Moultos
,
J. Chem. Theory Comput.
14
,
2667
(
2018
).
32.
A. T.
Celebi
,
S. H.
Jamali
,
A.
Bardow
,
T. J. H.
Vlugt
, and
O. A.
Moultos
,
Mol. Simul.
47
,
831
(
2021
).
33.
J. J.
Salacuse
,
A. R.
Denton
, and
P. A.
Egelstaff
,
Phys. Rev. E
53
,
2382
(
1996
).
34.
J.
Horbach
,
W.
Kob
,
K.
Binder
, and
C. A.
Angell
,
Phys. Rev. E
54
,
R5897
(
1996
).
35.
G.
Ahlers
and
R. V.
Duncan
,
Phys. Rev. Lett.
61
,
846
(
1988
).
36.
K.
Momeni
,
G. M.
Odegard
, and
R. S.
Yassar
,
Acta Mater.
60
,
5117
(
2012
).
37.
S.
Hussain
and
A.
Haji-Akbari
,
J. Chem. Phys.
154
,
014108
(
2021
).
38.
S.
Hussain
and
A.
Haji-Akbari
,
J. Chem. Phys.
156
,
054503
(
2022
).
39.
40.
M. L.
Glasser
,
Am. J. Phys.
38
,
415
(
1970
).
41.
R. G.
Barrera
,
O.
Guzmán
, and
B.
Balaguer
,
Am. J. Phys.
46
,
1172
(
1978
).
42.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
43.
D. J.
Price
and
C. L.
Brooks
III
,
J. Chem. Phys.
121
,
10096
(
2004
).
44.
I. S.
Joung
and
T. E.
Cheatham
III
,
J. Phys. Chem. B
112
,
9020
(
2008
).
45.
T. A.
Beu
,
J. Chem. Phys.
132
,
164513
(
2010
).
46.
F.
Müller-Plathe
,
Macromolecules
29
,
4782
(
1996
).
47.
M.
Engel
(
2021
). “
INJAVIS — INteractive JAva VISualization
,” Zenodo. https://doi.org/10.5281/zenodo.4639570
48.
T. D.
Nguyen
,
J.-M. Y.
Carrillo
,
A. V.
Dobrynin
, and
W. M.
Brown
,
J. Chem. Theory Comput.
9
,
73
(
2013
).
49.
51.
52.
D.
Bostick
and
M. L.
Berkowitz
,
Biophys. J.
85
,
97
(
2003
).
53.
A.
Haji-Akbari
,
J. Chem. Phys.
149
,
072303
(
2018
).
54.
S.
Hussain
and
A.
Haji-Akbari
,
J. Chem. Phys.
152
,
060901
(
2020
).
56.
J.-F.
Olivieri
,
J. T.
Hynes
, and
D.
Laage
,
J. Phys. Chem. Lett.
12
,
4319
(
2021
).
57.
I. L.
Geada
,
H.
Ramezani-Dakhel
,
T.
Jamil
,
M.
Sulpizi
, and
H.
Heinz
,
Nat. Commun.
9
,
716
(
2018
).
58.
R.
Allen
,
J.-P.
Hansen
, and
S.
Melchionna
,
Phys. Chem. Chem. Phys.
3
,
4177
(
2001
).
59.
D.
Boda
,
K.-Y.
Chan
, and
D.
Henderson
,
J. Chem. Phys.
109
,
7362
(
1998
).
60.
A. P.
dos Santos
,
M.
Girotto
, and
Y.
Levin
,
J. Chem. Phys.
147
,
074109
(
2017
).
61.
B. A.
Wells
and
A. L.
Chaffee
,
J. Chem. Theory Comput.
11
,
3684
(
2015
).
62.
K.
Breitsprecher
,
K.
Szuttor
, and
C.
Holm
,
J. Phys. Chem. C
119
,
22445
(
2015
).
63.
T.
Nagy
,
D.
Henderson
, and
D.
Boda
,
J. Phys. Chem. B
115
,
11409
(
2011
).
64.
J. I.
Siepmann
and
M.
Sprik
,
J. Chem. Phys.
102
,
511
(
1995
).
65.
S. K.
Reed
,
O. J.
Lanning
, and
P. A.
Madden
,
J. Chem. Phys.
126
,
084704
(
2007
).
66.
G.
Pireddu
,
L.
Scalfi
, and
B.
Rotenberg
,
J. Chem. Phys.
155
,
204705
(
2021
).
67.
B.
Uralcan
,
I. A.
Aksay
,
P. G.
Debenedetti
, and
D. T.
Limmer
,
J. Phys. Chem. Lett.
7
,
2333
(
2016
).
68.
B.
Uralcan
and
I. B.
Uralcan
,
ACS Appl. Mater. Interfaces
14
,
16800
(
2022
).
69.
F.
Iori
and
S.
Corni
,
J. Comput. Chem.
29
,
1656
(
2008
).
70.
D.
Boda
,
D.
Gillespie
,
W.
Nonner
,
D.
Henderson
, and
B.
Eisenberg
,
Phys. Rev. E
69
,
046702
(
2004
).
71.
B. A.
Shoemaker
and
A.
Haji-Akbari
(
2023
). “
shoemb/dielectricInterfacesGeneralized: v1.0
,” Zenodo. https://doi.org/10.5281/zenodo.10277946
72.
B. A.
Shoemaker
and
A.
Haji-Akbari
(
2023
). “
shoemb/ICDM: v1.0
,” Zenodo. https://doi.org/10.5281/zenodo.10277940
73.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
et al,
Comput. Sci. Eng.
16
,
62
(
2014
).
You do not currently have access to this content.