Localized atomic orbitals are the preferred basis set choice for large-scale explicit correlated calculations, and high-quality hierarchical correlation-consistent basis sets are a prerequisite for correlated methods to deliver numerically reliable results. At present, numeric atom-centered orbital (NAO) basis sets with valence correlation consistency (VCC), designated as NAO-VCC-nZ, are only available for light elements from hydrogen (H) to argon (Ar) [Zhang et al., New J. Phys. 15, 123033 (2013)]. In this work, we extend this series by developing NAO-VCC-nZ basis sets for krypton (Kr), a prototypical element in the fourth row of the periodic table. We demonstrate that NAO-VCC-nZ basis sets facilitate the convergence of electronic total-energy calculations using the Random Phase Approximation (RPA), which can be used together with a two-point extrapolation scheme to approach the complete basis set limit. Notably, the Basis Set Superposition Error (BSSE) associated with the newly generated NAO basis sets is minimal, making them suitable for applications where BSSE correction is either cumbersome or impractical to do. After confirming the reliability of NAO basis sets for Kr, we proceed to calculate the Helmholtz free energy for Kr crystal at the theoretical level of RPA plus renormalized single excitation correction. From this, we derive the pressure–volume (PV) diagram, which shows excellent agreement with the latest experimental data. Our work demonstrates the capability of correlation-consistent NAO basis sets for heavy elements, paving the way toward numerically reliable correlated calculations for bulk materials.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
4.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
5.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
6.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
(
2012
).
7.
D.
Bohm
and
D.
Pines
, “
A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas
,”
Phys. Rev.
92
,
609
(
1953
).
8.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
, “
Electron correlation methods based on the random phase approximation
,”
Theor. Chem. Acc.
131
,
1084
(
2012
).
9.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
, “
Random-phase approximation and its applications in computational chemistry and materials science
,”
J. Mater. Sci.
47
,
7447
(
2012
).
10.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
,
053020
(
2012
).
11.
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
, and
M.
Scheffler
, “
Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks
,”
Phys. Rev. B
88
,
035120
(
2013
).
12.
D. C.
Langreth
and
J. P.
Perdew
, “
Exchange-correlation energy of a metallic surface: Wave-vector analysis
,”
Phys. Rev. B
15
,
2884
(
1977
).
13.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
(
1976
).
14.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
, “
Development and assessment of a new hybrid density functional model for thermochemical kinetics
,”
J. Phys. Chem. A
108
,
2715
(
2004
).
15.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Chem. Phys.
124
,
034108
(
2006
).
16.
Y.
Zhang
,
X.
Xu
, and
W. A.
Goddard
III
, “
Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
4963
(
2009
).
17.
I. Y.
Zhang
and
X.
Xu
,
A New-Generation Density Functional
(
Springer
,
New York
,
2014
).
18.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
19.
S.
Lebègue
,
J.
Harl
,
T.
Gould
,
J. G.
Ángyán
,
G.
Kresse
, and
J. F.
Dobson
, “
Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation
,”
Phys. Rev. Lett.
105
,
196401
(
2010
).
20.
J.
Harl
,
L.
Schimka
, and
G.
Kresse
, “
Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids
,”
Phys. Rev. B
81
,
115126
(
2010
).
21.
H.
Eshuis
and
F.
Furche
, “
Basis set convergence of molecular correlation energy differences within the random phase approximation
,”
J. Chem. Phys.
136
,
084105
(
2012
).
22.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Long-range-corrected hybrids including random phase approximation correlation
,”
J. Chem. Phys.
130
,
081105
(
2009
).
23.
D. P.
Tew
,
W.
Klopper
, and
T.
Helgaker
, “
Electron correlation: The many-body problem at the heart of chemistry
,”
J. Comput. Chem.
28
,
1307
(
2007
).
24.
J.
Noga
,
W.
Kutzelnigg
, and
W.
Klopper
, “
CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve
,”
Chem. Phys. Lett.
199
,
497
(
1992
).
25.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
, “
Making the random phase approximation to electronic correlation accurate
,”
J. Chem. Phys.
131
,
154115
(
2009
).
26.
F.
Furche
, “
Molecular tests of the random phase approximation to the exchange-correlation energy functional
,”
Phys. Rev. B
64
,
195120
(
2001
).
27.
E.
Fabiano
and
F.
Della Sala
, “
Accuracy of basis-set extrapolation schemes for DFT-RPA correlation energies in molecular calculations
,”
Theor. Chem. Acc.
131
,
1278
(
2012
).
28.
A.
Grüneis
,
M.
Marsman
, and
G.
Kresse
, “
Second-order Møller–Plesset perturbation theory applied to extended systems. II. Structural and energetic properties
,”
J. Chem. Phys.
133
,
074107
(
2010
).
29.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
, “
Explicitly correlated electrons in molecules
,”
Chem. Rev.
112
,
4
(
2012
).
30.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
, “
Explicitly correlated R12/F12 methods for electronic structure
,”
Chem. Rev.
112
,
75
(
2012
).
31.
W.
Kutzelnigg
and
W.
Klopper
, “
Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory
,”
J. Chem. Phys.
94
,
1985
(
1991
).
32.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
33.
Y.
Wang
,
Y.
Li
,
J.
Chen
,
I. Y.
Zhang
, and
X.
Xu
, “
Doubly hybrid functionals close to chemical accuracy for both finite and extended systems: Implementation and test of XYG3 and XYGJ-OS
,”
JACS Au
1
,
543
(
2021
).
34.
I. Y.
Zhang
and
A.
Grüneis
, “
Coupled cluster theory in materials science
,”
Front. Mater.
6
,
123
(
2019
).
35.
H.-Z.
Ye
and
T. C.
Berkelbach
, “
Correlation-consistent Gaussian basis sets for solids made simple
,”
J. Chem. Theory Comput.
18
,
1595
(
2022
).
36.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
37.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
38.
M.
Marsman
,
A.
Grüneis
,
J.
Paier
, and
G.
Kresse
, “
Second-order Møller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set
,”
J. Chem. Phys.
130
,
184103
(
2009
).
39.
J. J.
Shepherd
,
A.
Grüneis
,
G. H.
Booth
,
G.
Kresse
, and
A.
Alavi
, “
Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems
,”
Phys. Rev. B
86
,
035111
(
2012
).
40.
J.
Klimeš
,
M.
Kaltak
,
E.
Maggio
, and
G.
Kresse
, “
Singles correlation energy contributions in solids
,”
J. Chem. Phys.
143
,
102816
(
2015
).
42.
H. N.
Rojas
,
R. W.
Godby
, and
R. J.
Needs
, “
Space–time method for ab initio calculations of self-energies and dielectric response functions of solids
,”
Phys. Rev. Lett.
74
,
1827
(
1995
).
43.
J.
Klimeš
,
M.
Kaltak
, and
G.
Kresse
, “
Predictive GW calculations using plane waves and pseudopotentials
,”
Phys. Rev. B
90
,
075125
(
2014
).
44.
I. Y.
Zhang
,
X.
Ren
,
P.
Rinke
,
V.
Blum
, and
M.
Scheffler
, “
Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar
,”
New J. Phys.
15
,
123033
(
2013
).
45.
I. Y.
Zhang
,
A. J.
Logsdail
,
X.
Ren
,
S. V.
Levchenko
,
L.
Ghiringhelli
, and
M.
Scheffler
, “
Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: Systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations
,”
New J. Phys.
21
,
013025
(
2019
).
46.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
(
2009
).
47.
E.
Van Lenthe
and
E. J.
Baerends
, “
Optimized Slater-type basis sets for the elements 1–118
,”
J. Comput. Chem.
24
,
1142
(
2003
).
48.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
,
931
(
2001
).
49.
R. C.
Raffenetti
, “
Even-tempered atomic orbitals. II. Atomic SCF wavefunctions in terms of even-tempered exponential bases
,”
J. Chem. Phys.
59
,
5936
(
1973
).
50.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
(
1965
).
51.
X.
Ren
,
A.
Tkatchenko
,
P.
Rinke
, and
M.
Scheffler
, “
Beyond the random-phase approximation for the electron correlation energy: The importance of single excitations
,”
Phys. Rev. Lett.
106
,
153003
(
2011
).
52.
S.
Yang
and
X.
Ren
, “
Phase stability of the argon crystal: First-principles study based on random phase approximation plus renormalized single excitation corrections
,”
New J. Phys.
24
,
033049
(
2022
).
53.
M. N.
Tahir
,
T.
Zhu
,
H.
Shang
,
J.
Li
,
V.
Blum
, and
X.
Ren
, “
Localized resolution of identity approach to the analytical gradients of random-phase approximation ground-state energy: Algorithm and benchmarks
,”
J. Chem. Theory Comput.
18
,
5297
(
2022
).
54.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
55.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
(
1997
).
56.
E.
van Lenthe
,
E.
Baerends
, and
J.
Snijders
, “
Relativistic total energy using regular approximations
,”
J. Chem. Phys.
101
,
9783
(
1994
).
57.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
(
2015
).
58.
L. A.
Schwalbe
,
R. K.
Crawford
,
H. H.
Chen
, and
R. A.
Aziz
, “
Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon
,”
J. Chem. Phys.
66
,
4493
(
1977
).
59.
D.
Losee
and
R.
Simmons
, “
Thermal-expansion measurements and thermodynamics of solid krypton
,”
Phys. Rev.
172
,
944
(
1968
).
60.
K.
Rościszewski
,
B.
Paulus
,
P.
Fulde
, and
H.
Stoll
, “
Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids
,”
Phys. Rev. B
62
,
5482
(
2000
).
61.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
(
1996
).
62.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
63.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
64.
A.
Tkatchenko
,
R. A.
DiStasio
, Jr.
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
236402
(
2012
).
65.
J.
Harl
and
G.
Kresse
, “
Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation–dissipation theory
,”
Phys. Rev. B
77
,
045136
(
2008
).
66.
F.
Ke
,
L.
Zhang
,
Y.
Chen
,
K.
Yin
,
C.
Wang
,
Y.-K.
Tzeng
,
Y.
Lin
,
H.
Dong
,
Z.
Liu
,
J. S.
Tse
et al, “
Synthesis of atomically thin hexagonal diamond with compression
,”
Nano Lett.
20
,
5916
(
2020
).
67.
A. P.
Nayak
,
S.
Bhattacharyya
,
J.
Zhu
,
J.
Liu
,
X.
Wu
,
T.
Pandey
,
C.
Jin
,
A. K.
Singh
,
D.
Akinwande
, and
J.-F.
Lin
, “
Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide
,”
Nat. Commun.
5
,
3731
(
2014
).
68.
Z.
Chi
,
X.
Chen
,
F.
Yen
,
F.
Peng
,
Y.
Zhou
,
J.
Zhu
,
Y.
Zhang
,
X.
Liu
,
C.
Lin
,
S.
Chu
et al, “
Superconductivity in pristine 2Ha–MoS2 at ultrahigh pressure
,”
Phys. Rev. Lett.
120
,
037002
(
2018
).
69.
A.
Jephcoat
,
H.
Mao
,
L.
Finger
,
D.
Cox
,
R.
Hemley
, and
C.-s.
Zha
, “
Pressure-induced structural phase transitions in solid xenon
,”
Phys. Rev. Lett.
59
,
2670
(
1987
).
70.
H.
Cynn
,
C. S.
Yoo
,
B.
Baer
,
V.
Iota-Herbei
,
A. K.
McMahan
,
M.
Nicol
, and
S.
Carlson
, “
Martensitic fcc-to-hcp transformation observed in xenon at high pressure
,”
Phys. Rev. Lett.
86
,
4552
(
2001
).
71.
K. A.
Goettel
,
J. H.
Eggert
,
I. F.
Silvera
, and
W. C.
Moss
, “
Optical evidence for the metallization of xenon at 132(5) GPa
,”
Phys. Rev. Lett.
62
,
665
(
1989
).
72.
D.
Errandonea
,
B.
Schwager
,
R.
Boehler
, and
M.
Ross
, “
Phase behavior of krypton and xenon to 50 GPa
,”
Phys. Rev. B
65
,
214110
(
2002
).
73.
D.
Errandonea
,
R.
Boehler
,
S.
Japel
,
M.
Mezouar
, and
L. R.
Benedetti
, “
Structural transformation of compressed solid Ar: An x-ray diffraction study to 114 GPa
,”
Phys. Rev. B
73
,
092106
(
2006
).
74.
R.
Reichlin
,
K. E.
Brister
,
A. K.
McMahan
,
M.
Ross
,
S.
Martin
,
Y. K.
Vohra
, and
A. L.
Ruoff
, “
Evidence for the insulator–metal transition in xenon from optical, x-ray, and band-structure studies to 170 GPa
,”
Phys. Rev. Lett.
62
,
669
(
1989
).
75.
M.
Ross
,
R.
Boehler
, and
P.
Söderlind
, “
Xenon melting curve to 80 GPa and 5pd hybridization
,”
Phys. Rev. Lett.
95
,
257801
(
2005
).
76.
A.
Rosa
,
G.
Garbarino
,
R.
Briggs
,
V.
Svitlyk
,
G.
Morard
,
M. A.
Bouhifd
,
J.
Jacobs
,
T.
Irifune
,
O.
Mathon
, and
S.
Pascarelli
, “
Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa
,”
Phys. Rev. B
97
,
094115
(
2018
).
77.
P.
Schwerdtfeger
,
K. G.
Steenbergen
, and
E.
Pahl
, “
Relativistic coupled-cluster and density-functional studies of argon at high pressure
,”
Phys. Rev. B
95
,
214116
(
2017
).
78.
E.
Kim
,
M.
Nicol
,
H.
Cynn
, and
C.-S.
Yoo
, “
Martensitic fcc-to-hcp transformations in solid xenon under pressure: A first-principles study
,”
Phys. Rev. Lett.
96
,
035504
(
2006
).
79.
I.
Kwon
,
L. A.
Collins
,
J. D.
Kress
, and
N.
Troullier
, “
First-principles study of solid Ar and Kr under high compression
,”
Phys. Rev. B
52
,
15165
(
1995
).
80.
J. K.
Dewhurst
,
R.
Ahuja
,
S.
Li
, and
B.
Johansson
, “
Lattice dynamics of solid xenon under pressure
,”
Phys. Rev. Lett.
88
,
075504
(
2002
).
81.
A.
Polian
,
J.
Itie
,
E.
Dartyge
,
A.
Fontaine
, and
G.
Tourillon
, “
X-ray absorption spectroscopy on solid krypton up to 20 GPa
,”
Phys. Rev. B
39
,
3369
(
1989
).
82.
A. P.
Jephcoat
, “
Rare-gas solids in the earth’s deep interior
,”
Nature
393
,
355
(
1998
).

Supplementary Material

You do not currently have access to this content.